cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A051603 Expansion of square of g.f. for A051573.

Original entry on oeis.org

1, 2, 3, 6, 11, 26, 58, 142, 351, 890, 2282, 5948, 15624, 41442, 110703, 297676, 804892, 2187490, 5971392, 16366734, 45021391, 124253828, 343956858, 954760502, 2656946827, 7411140120, 20716895918, 58027609028, 162837485745
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    (* r = A000081 *) r[n_] := r[n] = If[n<2, n, Sum[DivisorSum[j, #*r[#]&] * r[n-j], {j, 1, n-1}]/(n-1)]; b[n_] := b[n] = -If[n<0, 1, Sum[b[n-i] * r[i+1], {i, 1, n+1}]]; B[n_] := Sum[b[i]*x^i, {i, 0, n}]; T[n_, k_] := Coefficient[B[n]^k, x, n-k]; a[n_] := T[n+2, 2]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 23 2017, after Alois P. Heinz *)

A052250 Triangle T(n,k) (n >= 1, k >= 1) giving dimension of bigrading of Hopf algebra of rooted trees.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 6, 6, 4, 1, 8, 11, 13, 10, 5, 1, 16, 26, 27, 24, 15, 6, 1, 41, 58, 63, 55, 40, 21, 7, 1, 98, 142, 148, 132, 100, 62, 28, 8, 1, 250, 351, 363, 322, 251, 168, 91, 36, 9, 1, 631, 890, 912, 804, 635, 444, 266, 128, 45, 10, 1, 1646, 2282, 2330, 2051
Offset: 1

Views

Author

David Broadhurst, Feb 05 2000

Keywords

Examples

			Triangle begins
  1;
  1, 1;
  1, 2, 1;
  2, 3, 3, 1;
  3, 6, 6, 4, 1;
		

Crossrefs

First few columns give A051573, A051603, A052251, A052252.
Row sums give A000081(n+1). - Alois P. Heinz, Oct 23 2009

Programs

  • Maple
    with(numtheory): A81:= proc(n) option remember; `if`(n<2, n, (add(add(d*A81(d), d=divisors(j)) *A81(n-j), j=1..n-1))/ (n-1)) end: b:= proc(n) option remember; -`if`(n<0, 1, add(b(n-i) *A81(i+1), i=1..n+1)) end: B:= proc(n) add(b(i) *x^i, i=0..n) end: T:= (n,k)-> coeff(B(n)^k, x, n-k): seq(seq(T(n, k), k=1..n), n=1..13); # Alois P. Heinz, Oct 23 2009
  • Mathematica
    A81[n_] := A81[n] = If[n < 2, n, Sum[ Sum[ d*A81[d], {d, Divisors[j]} ] * A81[n-j], {j, 1, n-1}]/(n-1)]; b[n_] := b[n] = -If[n < 0, 1, Sum[ b[n-i]*A81[i+1], {i, 1, n+1}]]; B[n_] := Sum[ b[i]*x^i, {i, 0, n}]; T[n_, k_] := Coefficient[ B[n]^k, x, n-k]; Flatten[ Table[ T[n, k], {n, 1, 12}, {k, 1, n}]] (* Jean-François Alcover, Jan 20 2012, translated from Alois P. Heinz's Maple program *)

Extensions

More terms from Alois P. Heinz, Oct 23 2009

A052251 Column 3 of A052250.

Original entry on oeis.org

1, 3, 6, 13, 27, 63, 148, 363, 912, 2330, 6036, 15825, 41865, 111636, 299736, 809513, 2197728, 5994219, 16416748, 45129396, 124479270, 344403494, 955557780, 2658061560, 7411457963, 20710700277, 57992124810, 162691293718, 457219737027, 1287065977413
Offset: 3

Views

Author

David Broadhurst, Feb 05 2000

Keywords

Comments

Also expansion of cube of g.f. for A051573. - Alois P. Heinz, Oct 23 2009

Crossrefs

Cf. A051573, A000081. - Alois P. Heinz, Oct 23 2009
Cf. A051491.

Programs

  • Maple
    with(numtheory): A81:= proc(n) option remember; `if`(n<2, n, (add(add(d*A81(d), d=divisors(j)) *A81(n-j), j=1..n-1))/ (n-1)) end: b:= proc(n) option remember; -`if`(n<0, 1, add(b(n-i) *A81(i+1), i=1..n+1)) end: B:= proc(n) add(b(i) *x^i, i=0..n) end: a:= n-> coeff(B(n)^3, x, n-3): seq(a(n), n=3..35); # Alois P. Heinz, Oct 23 2009
  • Mathematica
    A81[n_] := A81[n] = If[n < 2, n, Sum[Sum[d A81[d], {d, Divisors[j]}] A81[n - j], {j, 1, n - 1}]/(n - 1)];
    b[n_] := b[n] = -If[n < 0, 1, Sum[b[n - i] A81[i + 1], {i, 1, n + 1}]];
    B[n_] := Sum[b[i] x^i, {i, 0, n}];
    T[n_, k_] := Coefficient[B[n]^k, x, n - k];
    a[n_] := T[n, 3];
    a /@ Range[3, 35] (* Jean-François Alcover, Nov 09 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148175241..., c = 0.195489104191039910520879642... . - Vaclav Kotesovec, Sep 05 2014

Extensions

More terms from Alois P. Heinz, Oct 23 2009

A052252 Column 4 of A052250.

Original entry on oeis.org

1, 4, 10, 24, 55, 132, 322, 804, 2051, 5304, 13886, 36716, 97882, 262756, 709658, 1926748, 5255707, 14396048, 39580338, 109190052, 302148814, 838449236, 2332652648, 6505071080, 18180441512, 50914047384, 142853059922, 401517522844, 1130400537667, 3187335556064
Offset: 4

Views

Author

David Broadhurst, Feb 05 2000

Keywords

Comments

Also expansion of 4th power of g.f. for A051573. - Alois P. Heinz, Oct 23 2009

Crossrefs

Cf. A051573, A000081. - Alois P. Heinz, Oct 23 2009

Programs

  • Maple
    with(numtheory): A81:= proc(n) option remember; `if`(n<2, n, (add(add(d*A81(d), d=divisors(j)) *A81(n-j), j=1..n-1))/ (n-1)) end: b:= proc(n) option remember; -`if`(n<0, 1, add(b(n-i) *A81(i+1), i=1..n+1)) end: B:= proc(n) add(b(i) *x^i, i=0..n) end: a:= n-> coeff(B(n)^4, x, n-4): seq(a(n), n=4..35); # Alois P. Heinz, Oct 23 2009
  • Mathematica
    A81[n_] := A81[n] = If[n < 2, n, Sum[Sum[d A81[d], {d, Divisors[j]}] A81[n - j], {j, 1, n - 1}]/(n - 1)];
    b[n_] := b[n] = -If[n < 0, 1, Sum[b[n - i] A81[i + 1], {i, 1, n + 1}]];
    B[n_] := Sum[b[i] x^i, {i, 0, n}];
    T[n_, k_] := Coefficient[B[n]^k, x, n - k];
    a[n_] := T[n, 4];
    a /@ Range[4, 35] (* Jean-François Alcover, Nov 09 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = 0.17246782327675280347707... . - Vaclav Kotesovec, Sep 06 2014

Extensions

More terms from Alois P. Heinz, Oct 23 2009

A098091 Graded dimension of the space of invariant bilinear forms on the free pre-Lie algebra on one generator.

Original entry on oeis.org

1, 1, 4, 7, 17, 36, 88, 196, 481, 1148, 2838, 7020, 17708, 44837, 114971, 296457
Offset: 5

Views

Author

F. Chapoton, Sep 14 2004

Keywords

Comments

The sequence starts at index 5 because the previous terms vanish.

Crossrefs

This is related in some sense to A000081.

Formula

It seems that a(n+1) = A000081(n) - A051573(n). - Andrey Zabolotskiy, Aug 05 2024

A144963 Eigentriangle, row sums = A000081 starting (1, 2, 4, 9, 20, 48, 115, ...).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 2, 4, 3, 2, 2, 4, 9, 8, 3, 4, 4, 9, 20, 16, 8, 6, 8, 9, 20, 48, 41, 16, 16, 12, 18, 20, 48, 115, 98, 41, 32, 32, 27, 40, 115, 286, 250, 98, 82, 64, 72, 60, 96, 115, 286, 719
Offset: 1

Views

Author

Gary W. Adamson, Sep 27 2008

Keywords

Comments

Row sums = A000081 starting with offset 2: (1, 2, 4, 9, 20, 48, 115, ...).
Right border = (1, 1, 2, 4, 9, 20, 48, ...).
Left border = A051573: (1, 1, 1, 2, 3, 8, 16, 41, ...).
Sum of n-th row terms = rightmost term of next row.

Examples

			First few rows of the triangle:
   1;
   1,  1;
   1,  1,  2;
   2,  1,  2,  4;
   3,  2,  2,  4,  9;
   8,  3,  4,  4,  9, 20;
  16,  8,  6,  8,  9, 20, 48;
  41, 16, 16, 12, 18, 20, 48, 115;
  98, 41, 32, 32, 27, 40, 48, 115, 286;
  ...
Row 4 = (2, 1, 2, 4) = termwise products of (2, 1, 1, 1) and (1, 1, 2, 4).
		

Formula

Eigentriangle by rows, termwise products of A000081 starting with offset 2: (1, 2, 4, 9, 20, 48, ...) and row terms of an A051573 decrescendo triangle: (1; 1,1; 1,1,1; 2,1,1,1; 3,2,1,1,1; ...) where A051573 = (1, 1, 1, 2, 3, 8, 16, 41, ...).

A115868 Invariants for a hidden action of S_(n+1) on Cayley trees with n vertices.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 6, 11, 18, 39, 70, 153, 321, 721, 1612, 3792, 8896, 21498, 52230, 128994, 320786, 806582, 2040912, 5205311, 13352470, 34460430, 89384609
Offset: 2

Views

Author

F. Chapoton, Mar 14 2006

Keywords

Comments

This is the multiplicity of the trivial module in a sequence of modules of dimension (n-1)^(n-3) over the symmetric groups S_n. The restriction of these modules to S_(n-1) is given by the action on trees.

Examples

			M[6]=s[2, 1, 1, 1, 1] + 3 s[2, 2, 2] + 2 s[3, 1, 1, 1] + 2 s[3, 2, 1] + s[4, 1, 1] + 4 s[4, 2] + s[5, 1] + 2 s[6] as a sum of Schur functions hence a[6]=2.
		

Crossrefs

Formula

No simple formula known, only a complicated sum over partitions.
It seems that a(n+1) = A000055(n) + A051573(n) - A000081(n). - Andrey Zabolotskiy, Aug 05 2024

Extensions

Five more terms added by F. Chapoton, Mar 08 2020
Showing 1-7 of 7 results.