A187796 Primes whose digits are a permutation of (0, ..., m) for some m.
10243, 12043, 20143, 20341, 20431, 23041, 24103, 30241, 32401, 40123, 40213, 40231, 41023, 41203, 42013, 43201, 10235647, 10236547, 10243567, 10243657, 10245637, 10247563, 10254367, 10254763, 10256347, 10256473, 10257463, 10264357
Offset: 1
Examples
As explained in the comments, there cannot be a term with fewer than 5 digits. The smallest number whose digits are a permutation of (0, ..., 4) is 10234, but this is even and cannot be a prime. The next larger one happens to be prime, so that's a(1) = 10243. It is also explained in the comments why there's no term larger than 76543210. The largest odd numbers of the given form below this limit are of the form 7654xyz1 and 7654abc3, with xyz resp. abc permutations of 023 resp. 012. It happens that the case xyz=023 is the only one which yields a prime: this is the largest term of this sequence, a(2684) = 76540231 = A109178(1).
Links
- M. F. Hasler, Table of n, a(n) for n = 1..2684
Programs
-
Mathematica
Select[Prime@ Range[10^6], {1} == Union@ Prepend[Differences@ #, 1 + First@ #] &@ Sort@ IntegerDigits@ # &] (* Michael De Vlieger, Aug 20 2017 *) Table[Select[FromDigits /@ Permutations[Range[0, n]], PrimeQ[ #] && DigitCount[ #, 10, 0] == 1 &], {n, 9}] // Flatten (* Harvey P. Dale, Jan 01 2020 *)
-
PARI
forprime(p=2,,#vecsort(t=digits(p),,8)==#t && #t==vecmax(t)+1 && print1(p","))
Comments