cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187796 Primes whose digits are a permutation of (0, ..., m) for some m.

Original entry on oeis.org

10243, 12043, 20143, 20341, 20431, 23041, 24103, 30241, 32401, 40123, 40213, 40231, 41023, 41203, 42013, 43201, 10235647, 10236547, 10243567, 10243657, 10245637, 10247563, 10254367, 10254763, 10256347, 10256473, 10257463, 10264357
Offset: 1

Views

Author

M. F. Hasler, Jan 06 2013

Keywords

Comments

Starts with the 5-digit terms listed in A109176: There is no smaller prime of that form, since there is no odd number of that form with less than 3 digits, and those with digits {0,1,2} and {0,1,2,3} (as, e.g., 2013...) are all divisible by 3, thus composite.
For similar reasons, there cannot be terms with the 6 digits {0, ..., 5} or the 7 digits {0, ..., 6} (since 1 + ... + 5 (+ 6) is divisible by 3).
The 8-digit terms a(17)..a(2684) are also listed in A109177 and A109178 (in reverse order). Again, there are no 9- or 10-digit terms (since 0+1+...+8(+9) is divisible by 9). Therefore, the sequence has no terms beyond the 2684 terms < 76543210 listed in the b-file.

Examples

			As explained in the comments, there cannot be a term with fewer than 5 digits. The smallest number whose digits are a permutation of (0, ..., 4) is 10234, but this is even and cannot be a prime. The next larger one happens to be prime, so that's a(1) = 10243.
It is also explained in the comments why there's no term larger than 76543210. The largest odd numbers of the given form below this limit are of the form 7654xyz1 and 7654abc3, with xyz resp. abc permutations of 023 resp. 012. It happens that the case xyz=023 is the only one which yields a prime: this is the largest term of this sequence, a(2684) = 76540231 = A109178(1).
		

Programs

  • Mathematica
    Select[Prime@ Range[10^6], {1} == Union@ Prepend[Differences@ #, 1 + First@ #] &@ Sort@ IntegerDigits@ # &] (* Michael De Vlieger, Aug 20 2017 *)
    Table[Select[FromDigits /@ Permutations[Range[0, n]], PrimeQ[ #] && DigitCount[ #, 10, 0] == 1 &], {n, 9}] // Flatten (* Harvey P. Dale, Jan 01 2020 *)
  • PARI
    forprime(p=2,,#vecsort(t=digits(p),,8)==#t && #t==vecmax(t)+1 && print1(p","))

Formula

This sequence A187796 = A109176 union A109177.