A187797 Numbers having at least two different ordered partitions p+q and (p+2)+(q-2) where p, q, p+2 and q-2 are all prime.
10, 16, 18, 22, 24, 30, 34, 36, 42, 46, 48, 54, 60, 64, 66, 72, 76, 78, 84, 90, 102, 106, 108, 112, 114, 120, 126, 132, 138, 142, 144, 150, 154, 156, 162, 168, 174, 180, 184, 186, 192, 196, 198, 202, 204, 210, 216, 222, 228, 232, 234, 240, 244, 246, 252, 258, 264, 270, 274, 276, 282, 286
Offset: 1
Keywords
Examples
For n=10, the partition solutions are 3+7 and 5+5, giving p=3, q=7, p+2=5, q-2=5.
Programs
-
Maple
isA187797 := proc(n) local i,p,q ; for i from 1 do p := ithprime(i) ; q := n-p ; if q <= p+2 then return false; end if; if isprime(q) then if isprime(p+2) and isprime(q-2) then return true; end if; end if; end do: return false; end proc: for n from 4 to 600 do if isA187797(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Oct 03 2013
-
Mathematica
Table[If[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[2 n - i] - PrimePi[2 n - i - 1]) (PrimePi[i + 2] - PrimePi[i + 1]) (PrimePi[2 n - i - 2] - PrimePi[2 n - i - 3]), {i, n - 2}] > 0, 2 n, {}], {n, 100}] // Flatten (* Wesley Ivan Hurt, Apr 13 2020 *)
Comments