cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187797 Numbers having at least two different ordered partitions p+q and (p+2)+(q-2) where p, q, p+2 and q-2 are all prime.

Original entry on oeis.org

10, 16, 18, 22, 24, 30, 34, 36, 42, 46, 48, 54, 60, 64, 66, 72, 76, 78, 84, 90, 102, 106, 108, 112, 114, 120, 126, 132, 138, 142, 144, 150, 154, 156, 162, 168, 174, 180, 184, 186, 192, 196, 198, 202, 204, 210, 216, 222, 228, 232, 234, 240, 244, 246, 252, 258, 264, 270, 274, 276, 282, 286
Offset: 1

Views

Author

Bob Gilson, Aug 30 2013

Keywords

Comments

Numbers k with at least one pair of externally tangent circles with radius sqrt(2) and center (p,q) where p and q are prime, p + q = k and p <= q. - Wesley Ivan Hurt, Aug 11 2020

Examples

			For n=10, the partition solutions are 3+7 and 5+5, giving p=3, q=7, p+2=5, q-2=5.
		

Programs

  • Maple
    isA187797 := proc(n)
        local i,p,q ;
        for i from 1 do
            p := ithprime(i) ;
            q := n-p ;
            if q <= p+2 then
                return false;
            end if;
            if isprime(q) then
                if isprime(p+2) and isprime(q-2) then
                    return true;
                end if;
            end if;
        end do:
        return false;
    end proc:
    for n from 4 to 600 do
        if isA187797(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Oct 03 2013
  • Mathematica
    Table[If[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[2 n - i] - PrimePi[2 n - i - 1]) (PrimePi[i + 2] - PrimePi[i + 1]) (PrimePi[2 n - i - 2] - PrimePi[2 n - i - 3]), {i, n - 2}] > 0, 2 n, {}], {n, 100}] // Flatten (* Wesley Ivan Hurt, Apr 13 2020 *)