A187824 a(n) is the largest m such that n is congruent to -1, 0 or 1 mod k for all k from 1 to m.
3, 4, 5, 6, 3, 4, 4, 5, 3, 6, 4, 4, 3, 5, 5, 4, 3, 6, 5, 5, 3, 4, 6, 6, 3, 4, 4, 7, 3, 6, 4, 4, 3, 7, 7, 4, 3, 5, 5, 8, 3, 4, 5, 5, 3, 4, 4, 8, 3, 5, 4, 4, 3, 9, 5, 4, 3, 6, 6, 6, 3, 4, 5, 6, 3, 4, 4, 5, 3, 10, 4, 4, 3, 5, 5, 4, 3, 6, 5, 5, 3, 4, 7, 7, 3, 4, 4, 6, 3, 7, 4, 4, 3, 6, 6, 4, 3, 5, 5, 6, 3
Offset: 2
Examples
For n = 6, a(6) = 3 as follows. m Residue of 6 (mod m) 1 0 2 0 3 0 4 2 5 1 6 0 7 -1
Links
- N. J. A. Sloane, Table of n, a(n) for n = 2..10000
- Don Reble, Division gets rough: OEIS A187824 and A220890
Crossrefs
Programs
-
Maple
A187824:= proc(n) local j,r; for j from 4 do r:= mods(n, j); if r <> r^3 then return j-1 end if end do end proc; # Robert Israel, Dec 31 2012
-
Mathematica
f[n_] := Block[{k = 4, r}, While[r = Mod[n, k]; r < 2 || k - r < 2, k++]; k - 1]; Array[f, 101, 2] (* Robert G. Wilson v, Dec 31 2012 *)
-
PARI
A187824(n)={n++>2 && for(k=4,oo, n%k>2 && return(k-1))} \\ M. F. Hasler, Dec 31 2012, minor edits Aug 20 2020
-
PARI
a(n)=my(k=3);n++;while(n%k++<3,);k-1 \\ Charles R Greathouse IV, Jan 02 2013
-
Python
from gmpy2 import t_mod def A187824(n): k = 1 while t_mod(n+1,k) < 3: k += 1 return k-1 # Chai Wah Wu, Aug 31 2014
-
Python
def a(n): m=1 while abs(n%m) < 2: m += 1 return m [a(n) for n in range(1,100)] # Derek Orr, Aug 31 2014, corrected & edited by M. F. Hasler, Aug 20 2020
Formula
If n == 0 (mod 20), then a(n-2) = a(n+2) = 3, while a(n) = 5,5,6, 5,5,8, 5,5,6, 5,5,6, 5,5,7, 5,5,6, 5,5,7, ... with records a(20) = 5, a(60) = 6, a(120) = 8, a(720) = 10, a(2520) = 12, a(9360) = 13, ... If n == 0 (mod 5), but is not a multiple of 20, then always a(n-2) = a(n+2) = 4, while a(n) = 6,3,5, 6,3,7, 5,3,9, 6,3,5, 7,3,6, 5,3,6, 7,3,5, ... - Vladimir Shevelev, Dec 31 2012
a(n)=3 iff n == 2 (mod 4). a(n)=4 iff n == 3, 7, 8, 12, 13, 17 (mod 20), i.e., n == 2 or 3 (mod 5) but not n == 2 (mod 4). In the same way one can obtain a covering set for any value taken by a(n), this is actually nothing else than the definition. For example, n == 2, 3 or 4 (mod 6) but not 2 or 3 (mod 5) nor 2 (mod 4) yields a(n)=5 iff n == 4, 9, 15, 16, 20, 21, 39, 40, 44, 45, 51 or 56 (mod 60), etc. - M. F. Hasler, Dec 31 2012
Extensions
Corrected m = 100 by Kival Ngaokrajang, Dec 30 2012
Definition & example corrected by Kival Ngaokrajang, Dec 30 2012
More terms from N. J. A. Sloane, Dec 30 2012
Comments