A187848 a(n) is the moment of order n for the probability density function defined by rho(x)=exp(x-1)/((Ei(x-1))^2+Pi^2) over the interval 1..infinity, with Ei the exponential integral.
1, 4, 20, 120, 836, 6608, 58324, 568296, 6060340, 70245856, 879937892, 11853424536, 170963881892, 2629912684784, 42995842035316, 744683072665416, 13624184625098644, 262594854417561856, 5319099368762699012, 112977659152942035192, 2511041582408699358980
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Maple
with(LinearAlgebra): c:= proc(n) option remember; add(n!/k!, k=0..n) end: a:= n-> (-1)^(n+1) *Determinant(Matrix(n+2, (i, j)-> `if`(0<=i+1-j, c(i+1-j), 0))): seq(a(n), n=0..20); # Alois P. Heinz, Mar 24 2011 # second Maple program: b:= proc(n) option remember; `if`(n<0, -1, -add(b(n-i)*i!, i=1..n+1)) end: a:= n-> add(b(k+1)*binomial(n, k), k=0..n): seq(a(n), n=0..20); # Alois P. Heinz, Aug 26 2013
-
Mathematica
b[n_] := b[n] = If[n<0, -1, -Sum[b[n-i]*i!, {i, 1, n+1}]]; a[n_] := Sum[b[k+1] * Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *)
Formula
Let c(n)=A000522(n) and An the square matrix of order n+2 defined by: if j<=i A[i,j]=c(i-j+1); A(i,i+1)=1; if j>i+1 A[i,j]=0; then a(n)=(-1)^(n+1)*det(An).
G.f.: (1 - 2*x - U(0))/x^2 where U(k)= 1 - x - x*(k+1)/(1 - x*(k+1)/U(k+1)) ; (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 14 2012
G.f.: 1/x^2 - 1/x -1/(x^2*W(0)) , where W(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+2) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 25 2013
G.f.: W(0)/x - 1/x, where W(k) = 1 - x*(k+1)/( x*(k+2) - 1/(1 - x*(k+1+R)/( x*(k+1+R) - 1/W(k+1) ))); R=1 (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
a(n) ~ exp(1) * n! * n^2 * (1 - 1/n - 4/n^3 - 23/n^4 - 175/n^5 - 1615/n^6 - 17375/n^7 - 212607/n^8 - 2909007/n^9 - 43953071/n^10). - Vaclav Kotesovec, Sep 02 2014, updated Aug 01 2015
Comments