cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187848 a(n) is the moment of order n for the probability density function defined by rho(x)=exp(x-1)/((Ei(x-1))^2+Pi^2) over the interval 1..infinity, with Ei the exponential integral.

Original entry on oeis.org

1, 4, 20, 120, 836, 6608, 58324, 568296, 6060340, 70245856, 879937892, 11853424536, 170963881892, 2629912684784, 42995842035316, 744683072665416, 13624184625098644, 262594854417561856, 5319099368762699012, 112977659152942035192, 2511041582408699358980
Offset: 0

Views

Author

Groux Roland, Mar 14 2011

Keywords

Comments

a(n) is also the binomial transform of A003319(n+1).

Programs

  • Maple
    with(LinearAlgebra):
    c:= proc(n) option remember; add(n!/k!, k=0..n) end:
    a:= n-> (-1)^(n+1) *Determinant(Matrix(n+2,
            (i, j)-> `if`(0<=i+1-j, c(i+1-j), 0))):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 24 2011
    # second Maple program:
    b:= proc(n) option remember;
          `if`(n<0, -1, -add(b(n-i)*i!, i=1..n+1))
        end:
    a:= n-> add(b(k+1)*binomial(n, k), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 26 2013
  • Mathematica
    b[n_] := b[n] = If[n<0, -1, -Sum[b[n-i]*i!, {i, 1, n+1}]]; a[n_] := Sum[b[k+1] * Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *)

Formula

Let c(n)=A000522(n) and An the square matrix of order n+2 defined by: if j<=i A[i,j]=c(i-j+1); A(i,i+1)=1; if j>i+1 A[i,j]=0; then a(n)=(-1)^(n+1)*det(An).
G.f.: (1 - 2*x - U(0))/x^2 where U(k)= 1 - x - x*(k+1)/(1 - x*(k+1)/U(k+1)) ; (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 14 2012
G.f.: 1/x^2 - 1/x -1/(x^2*W(0)) , where W(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+2) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 25 2013
G.f.: W(0)/x - 1/x, where W(k) = 1 - x*(k+1)/( x*(k+2) - 1/(1 - x*(k+1+R)/( x*(k+1+R) - 1/W(k+1) ))); R=1 (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
a(n) ~ exp(1) * n! * n^2 * (1 - 1/n - 4/n^3 - 23/n^4 - 175/n^5 - 1615/n^6 - 17375/n^7 - 212607/n^8 - 2909007/n^9 - 43953071/n^10). - Vaclav Kotesovec, Sep 02 2014, updated Aug 01 2015