A188050 a(n) = A016755(n) - A001845(n).
0, 20, 100, 280, 600, 1100, 1820, 2800, 4080, 5700, 7700, 10120, 13000, 16380, 20300, 24800, 29920, 35700, 42180, 49400, 57400, 66220, 75900, 86480, 98000, 110500, 124020, 138600, 154280, 171100, 189100, 208320, 228800, 250580, 273700
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
A016755:=func< n | (2*n+1)^3 >; A001845:=func< n | (2*n+1)*(2*n^2+2*n+3)/3 >; [ A016755(n)-A001845(n): n in [0..40] ]; // Klaus Brockhaus, Mar 20 2011
-
Maple
(10/3)*n*(n+1)*(2*n+1)
-
Mathematica
10n(n+1)(2n+1)/3 LinearRecurrence[{4,-6,4,-1},{0,20,100,280},40] (* Harvey P. Dale, Jul 18 2016 *)
Formula
a(n) = (10/3)*n*(n + 1)*(2*n + 1).
a(n) = 20 * A000330(n).
G.f.: 20*x*(1+x)/(1-x)^4. - Klaus Brockhaus, Mar 20 2011
Comments