A188061 Numbers k such that (product of divisors of k) == 1 (mod sum of divisors of k).
4, 9, 16, 25, 49, 55, 64, 81, 121, 161, 169, 209, 256, 289, 351, 361, 529, 551, 625, 649, 729, 841, 961, 1024, 1079, 1189, 1369, 1407, 1443, 1681, 1849, 2015, 2209, 2289, 2401, 2809, 2849, 2915, 2975, 3401, 3481, 3721, 3857, 4096, 4489, 4599, 4887, 5041, 5329, 6049, 6241, 6319, 6561, 6889, 6993, 7921, 8569, 9409, 9701
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
mptQ[n_]:=Module[{dn=Divisors[n]},Mod[Times@@dn,Total[dn]]==1]; Join[{1},Select[Range[10000],mptQ]] (* Harvey P. Dale, Mar 28 2011 *)
-
PARI
proddiv(n)=local(t);t=numdiv(n);if(t%2==0,n^(t\2),sqrtint(n)^t) for(n=1,10000,if(Mod(proddiv(n),sigma(n))==1,print1(n",")))
-
Python
from gmpy2 import powmod, is_square, isqrt from sympy import divisor_sigma A188061_list = [n for n in range(1,10**4) if powmod(isqrt(n) if is_square(n) else n, int(divisor_sigma(n,0))//(1 if is_square(n) else 2), int(divisor_sigma(n,1))) == 1] # Chai Wah Wu, Mar 10 2016
Formula
A187680(a(n)) = 1.
Extensions
More terms from Franklin T. Adams-Watters, Mar 21 2011
Comments