cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A187680 a(n) = (product of divisors of n) mod (sum of divisors of n).

Original entry on oeis.org

0, 2, 3, 1, 5, 0, 7, 4, 1, 10, 11, 20, 13, 4, 9, 1, 17, 21, 19, 20, 25, 16, 23, 36, 1, 4, 9, 0, 29, 0, 31, 8, 33, 22, 25, 83, 37, 4, 9, 40, 41, 48, 43, 8, 21, 28, 47, 88, 1, 8, 9, 76, 53, 96, 1, 16, 49, 34, 59, 120, 61, 4, 31, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 17 2011

Keywords

Crossrefs

Programs

  • Maple
    A187680 := proc(n) A007955(n) mod numtheory[sigma](n) ; end proc:
    seq(A187680(n),n=1..120) ; # R. J. Mathar, Mar 17 2011
  • Mathematica
    Table[Mod[Times@@Divisors[n],DivisorSigma[1,n]],{n,70}] (* Harvey P. Dale, May 23 2021 *)
    a[n_] := Mod[n^(DivisorSigma[0, n]/2), DivisorSigma[1, n]]; Array[a, 60] (* Amiram Eldar, Jun 18 2022 *)
  • PARI
    a(n) = my(d=divisors(n)); vecprod(d) % vecsum(d); \\ Michel Marcus, Jan 29 2019

Formula

a(n) = A007955(n) mod A000203(n).
a(n) = 0 iff n is in A145551 and a(n) = 1 iff n is in A188061. - Amiram Eldar, Jun 18 2022

A346956 Numbers k such that A000203(k) and A007955(k) are both divisible by A187680(k).

Original entry on oeis.org

4, 9, 14, 16, 25, 38, 42, 49, 51, 55, 62, 64, 70, 81, 86, 92, 96, 117, 121, 130, 134, 138, 140, 158, 159, 161, 168, 169, 182, 206, 209, 234, 254, 256, 266, 267, 278, 282, 284, 289, 302, 322, 326, 351, 361, 376, 390, 398, 408, 410, 422, 426, 434, 446, 477, 508, 529, 532, 534, 542, 551, 566, 590
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Aug 08 2021

Keywords

Comments

Numbers k such that both the sum s and product p of the divisors of k are divisible by (p mod s).

Examples

			a(3) = 14 is a term because A000203(14) = 1+2+7+14 = 24, A007955(14) = 1*2*7*14 = 196, A187680(14) = 196 mod 24 = 4, and both 24 and 196 are divisible by 4.
		

Crossrefs

Includes A188061.

Programs

  • Maple
    filter:= proc(n) local d,s,p,r;
      d:= numtheory:-divisors(n);
      s:= convert(d,`+`);
      p:= convert(d,`*`);
      r:= p mod s;
      r <> 0 and p mod r = 0 and s mod r = 0
    end proc:
    select(filter, [$1..1000]);
  • Mathematica
    okQ[n_] := Module[{d, s, p, m},
      d = Divisors[n];
      s = Total[d];
      p = Times @@ d;
      m = Mod[p, s];
      If[m == 0, False, Divisible[s, m] && Divisible[p, m]]];
    Select[Range[1000], okQ] (* Jean-François Alcover, May 16 2023 *)
  • PARI
    isok(k) = my(d=divisors(k), s=vecsum(d), p=vecprod(d), m=p % s); (m>0) && !(s%m) && !(p%m); \\ Michel Marcus, Aug 09 2021
Showing 1-2 of 2 results.