cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A346956 Numbers k such that A000203(k) and A007955(k) are both divisible by A187680(k).

Original entry on oeis.org

4, 9, 14, 16, 25, 38, 42, 49, 51, 55, 62, 64, 70, 81, 86, 92, 96, 117, 121, 130, 134, 138, 140, 158, 159, 161, 168, 169, 182, 206, 209, 234, 254, 256, 266, 267, 278, 282, 284, 289, 302, 322, 326, 351, 361, 376, 390, 398, 408, 410, 422, 426, 434, 446, 477, 508, 529, 532, 534, 542, 551, 566, 590
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Aug 08 2021

Keywords

Comments

Numbers k such that both the sum s and product p of the divisors of k are divisible by (p mod s).

Examples

			a(3) = 14 is a term because A000203(14) = 1+2+7+14 = 24, A007955(14) = 1*2*7*14 = 196, A187680(14) = 196 mod 24 = 4, and both 24 and 196 are divisible by 4.
		

Crossrefs

Includes A188061.

Programs

  • Maple
    filter:= proc(n) local d,s,p,r;
      d:= numtheory:-divisors(n);
      s:= convert(d,`+`);
      p:= convert(d,`*`);
      r:= p mod s;
      r <> 0 and p mod r = 0 and s mod r = 0
    end proc:
    select(filter, [$1..1000]);
  • Mathematica
    okQ[n_] := Module[{d, s, p, m},
      d = Divisors[n];
      s = Total[d];
      p = Times @@ d;
      m = Mod[p, s];
      If[m == 0, False, Divisible[s, m] && Divisible[p, m]]];
    Select[Range[1000], okQ] (* Jean-François Alcover, May 16 2023 *)
  • PARI
    isok(k) = my(d=divisors(k), s=vecsum(d), p=vecprod(d), m=p % s); (m>0) && !(s%m) && !(p%m); \\ Michel Marcus, Aug 09 2021

A192853 Places n such that the two remainders A187680(n) and A191906(n) are both zero.

Original entry on oeis.org

6, 28, 120, 270, 496, 672, 924, 1320, 3948, 7980, 8128, 10920, 12690, 15456, 18018, 25296, 27930, 29190, 30240, 30294, 32760, 35640, 52080, 55692, 61770, 69936, 76986, 83160, 83580, 86814, 106950, 127218, 130200, 131040, 141360, 155610
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 11 2011

Keywords

Comments

The even perfect numbers (A000396) are a subsequence.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local Q,p,s;
      Q:= numtheory:-divisors(n) minus {n};
      p:= convert(Q,`*`); s:= convert(Q,`+`);
      p mod s = 0 and (p * n ) mod (s + n ) = 0
    end proc:
    select(filter, [$2..2*10^5]); # Robert Israel, Apr 22 2025

A191906 The remainder of (product of proper divisors of n) mod (sum of proper divisors of n).

Original entry on oeis.org

0, 0, 2, 0, 0, 0, 1, 3, 2, 0, 0, 0, 4, 6, 4, 0, 9, 0, 4, 10, 8, 0, 0, 5, 10, 1, 0, 0, 36, 0, 1, 3, 14, 9, 41, 0, 16, 5, 0, 0, 0, 0, 16, 12, 20, 0, 44, 7, 6, 9, 36, 0, 54, 4, 0, 11, 26, 0, 0, 0, 28, 33, 8, 8, 66, 0, 42, 15, 10, 0, 81, 0, 34, 39, 16, 1, 72, 0, 10, 9, 38, 0, 84, 16, 40, 21
Offset: 2

Views

Author

Juri-Stepan Gerasimov, Jun 19 2011

Keywords

Examples

			a(2) = 1 mod 1 = 0;
a(3) = 1 mod 1 = 0;
a(4) = 2 mod 3 = 2.
		

Crossrefs

Programs

  • Maple
    A007956 := n -> mul(i, i=op(numtheory[divisors](n) minus {1, n}));
    A001065 := proc(n) numtheory[sigma](n)-n ; end proc:
    A191906 := proc(n) A007956(n) mod A001065(n) ; end proc:
    seq(A191906(n),n=2..90) ; # R. J. Mathar, Jun 25 2011
  • Mathematica
    Table[With[{pd=Most[Divisors[n]]},Mod[Times@@pd,Total[pd]]],{n,2,90}] (* Harvey P. Dale, Nov 24 2021 *)
  • PARI
    A191906(n) = { my(m=1,s=0); fordiv(n, d, if(dAntti Karttunen, Jul 11 2019

Formula

a(n) = A007956(n) mod A001065(n).

A188061 Numbers k such that (product of divisors of k) == 1 (mod sum of divisors of k).

Original entry on oeis.org

4, 9, 16, 25, 49, 55, 64, 81, 121, 161, 169, 209, 256, 289, 351, 361, 529, 551, 625, 649, 729, 841, 961, 1024, 1079, 1189, 1369, 1407, 1443, 1681, 1849, 2015, 2209, 2289, 2401, 2809, 2849, 2915, 2975, 3401, 3481, 3721, 3857, 4096, 4489, 4599, 4887, 5041, 5329, 6049, 6241, 6319, 6561, 6889, 6993, 7921, 8569, 9409, 9701
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 20 2011, Jun 18 2011

Keywords

Comments

This sequence includes every number of the form p^(2n), where p is a prime. Other semiprime members include 55, 161, 209, 551, 649, 1079, 1189, 3401, 6049, 6319, 9701. Are there infinitely many nonsquare semiprimes in the sequence? Is there some simpler property of primes p and q that puts pq in this sequence?

Crossrefs

Programs

  • Mathematica
    mptQ[n_]:=Module[{dn=Divisors[n]},Mod[Times@@dn,Total[dn]]==1]; Join[{1},Select[Range[10000],mptQ]]  (* Harvey P. Dale, Mar 28 2011 *)
  • PARI
    proddiv(n)=local(t);t=numdiv(n);if(t%2==0,n^(t\2),sqrtint(n)^t)
    for(n=1,10000,if(Mod(proddiv(n),sigma(n))==1,print1(n",")))
    
  • Python
    from gmpy2 import powmod, is_square, isqrt
    from sympy import divisor_sigma
    A188061_list = [n for n in range(1,10**4) if powmod(isqrt(n) if is_square(n) else n, int(divisor_sigma(n,0))//(1 if is_square(n) else 2), int(divisor_sigma(n,1))) == 1] # Chai Wah Wu, Mar 10 2016

Formula

A187680(a(n)) = 1.

Extensions

More terms from Franklin T. Adams-Watters, Mar 21 2011

A187711 Integers k which equal (product of divisors of k) mod (sum of divisors of k).

Original entry on oeis.org

2, 3, 5, 7, 10, 11, 13, 17, 19, 20, 23, 29, 31, 33, 37, 40, 41, 43, 47, 53, 59, 61, 67, 71, 73, 76, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 136, 137, 139, 145, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 207, 211, 223, 227, 229, 233, 239, 241, 251, 257, 261, 263, 269, 271, 277
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 17 2011

Keywords

Crossrefs

Programs

  • Maple
    isA187711 := proc(n) is(A187680(n) = n) end proc:
    for n from 2 to 300 do if isA187711(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Mar 17 2011
  • Mathematica
    Select[Range[300], Mod[#^(DivisorSigma[0, #]/2), DivisorSigma[1, #]] == # &] (* G. C. Greubel, Nov 05 2018 *)

Formula

{ k : k = A187680(k) }.

A187712 Composite numbers k such that k = (product of divisors of k) mod (sum of divisors of k).

Original entry on oeis.org

10, 20, 33, 40, 76, 136, 145, 207, 261, 385, 464, 528, 588, 897, 931, 1441, 1519, 1611, 1816, 1989, 2016, 2205, 2241, 2353, 3280, 3504, 3724, 3808, 4067, 4320, 4864, 5696, 6256, 7201, 7345, 8036, 10688, 10936, 11376, 13000, 16840, 17101, 18625, 19359, 19504, 19840
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 17 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[20000], CompositeQ[#] && PowerMod[#, DivisorSigma[0, #]/2, DivisorSigma[1, #]] == # &] (* Amiram Eldar, Mar 22 2024 *)
  • PARI
    is1(n) = my(f = factor(n), s = sigma(f), d = numdiv(f)); if(d%2, Mod(sqrtint(n), s)^d, Mod(n, s)^(d/2)) == n;
    is(n) = n > 1 && !isprime(n) && is1(n); \\ Amiram Eldar, Mar 22 2024

Formula

A187711 INTERSECT A002808.

Extensions

More terms from Amiram Eldar, Mar 22 2024

A192035 Numbers k with equal remainders of (product of divisors of k) mod (sum of divisors of k) and (product of proper divisors of k) mod (sum of proper divisors of k).

Original entry on oeis.org

6, 14, 28, 51, 120, 260, 270, 496, 672, 679, 752, 924, 1260, 1320, 1540, 1960, 2055, 2262, 2651, 3808, 3948, 4381, 6413, 6435, 6944, 7900, 7980, 8010, 8128, 9809, 9945, 10242, 10920, 12690, 15456, 16830, 18018, 21728, 21970, 22320, 25296, 27930, 29190, 29792
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 21 2011

Keywords

Comments

The even perfect numbers (A000396) are a subsequence.
The deficient numbers (A005100) in the sequence are 14, 51, 679, 752, 2055, 2651, 4381, 6413, 9809, 9945, 21970, ... - Juri-Stepan Gerasimov, Jul 07 2011

Examples

			14 is in this sequence because (1*2*7*14) mod (1+2+7+14) = 196 mod 24 = 4 and (1*2*7) mod (1+2+7) = 14 mod 10 = 4.
		

Crossrefs

Programs

  • Mathematica
    erQ[n_]:=Module[{divs=Divisors[n],ds=DivisorSigma[1,n]},Mod[ Times@@ divs,ds] == Mod[ Times@@Most[divs],ds-n]]; Select[Range[2,30000],erQ] (* Harvey P. Dale, Jun 13 2015 *)
    Select[Range[2, 30000], Mod[(p = #^(DivisorSigma[0, #]/2)), (s = DivisorSigma[1, #])] == Mod[p/#, s - #] &] (* Amiram Eldar, Jul 21 2019 *)

Formula

{ k : A187680(k) = A191906(k) }.

Extensions

Values from a(4) onwards from R. J. Mathar, Jul 05 2011

A191868 Numbers n such that (product of divisors of 2n) mod (sum of divisors of 2n) is equal to number of divisors of 2n.

Original entry on oeis.org

1, 4, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 448, 457, 463, 487, 499, 523, 541
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 18 2011

Keywords

Crossrefs

Programs

  • PARI
    is(n)=my(t=2*n,P=if(issquare(t,&t), t^numdiv(t^2),t^(numdiv(t)/2))); P%sigma(2*n)==numdiv(2*n) \\ Charles R Greathouse IV, Jun 19 2011

Extensions

More terms from Charles R Greathouse IV, Jun 19 2011
Showing 1-8 of 8 results.