A188123 Number of strictly increasing arrangements of 4 nonzero numbers in -(n+2)..(n+2) with sum zero.
1, 3, 8, 16, 31, 51, 80, 118, 167, 227, 302, 390, 495, 617, 758, 918, 1101, 1305, 1534, 1788, 2069, 2377, 2716, 3084, 3485, 3919, 4388, 4892, 5435, 6015, 6636, 7298, 8003, 8751, 9546, 10386, 11275, 12213, 13202, 14242, 15337, 16485, 17690, 18952, 20273, 21653
Offset: 0
Keywords
Examples
Some solutions for n=6 .-6...-7...-8...-8...-5...-7...-6...-6...-7...-5...-8...-4...-5...-7...-7...-4 .-1...-2...-5...-2...-4...-2...-4...-4...-6...-4....1...-3...-2...-6...-3...-3 ..3....4....5....2....2....1....4....3....6....4....2....3...-1....5....3....2 ..4....5....8....8....7....8....6....7....7....5....5....4....8....8....7....5 a(0) = 1 with unique solution [-2, -1, 1, 2]. - _Michael Somos_, Apr 11 2011
Links
- R. H. Hardin, Table of n, a(n) for n = 0..200 (corrected by _R. H. Hardin_, Jan 19 2019)
Programs
-
PARI
{a(n) = local(v, c, m); m = n+2; forvec( v = vector( 4, i, [-m, m]), if( 0==prod( k=1, 4, v[k]), next); if( 0==sum( k=1, 4, v[k]), c++), 2); c} /* Michael Somos, Apr 11 2011 */
Formula
Empirical: a(n)=2*a(n-1)-a(n-3)-a(n-4)+2*a(n-6)-a(n-7) = 35/36 +2*n^2/3 +7*n/6 +2*n^3/9 +(-1)^n/4 -2*A049347(n)/9.
Empirical: G.f. -x*(-3-2*x-2*x^3-2*x^5+x^6) / ( (1+x)*(1+x+x^2)*(x-1)^4 ). - R. J. Mathar, Mar 21 2011
Empirical: a(n) = 1/108*(8*sqrt(3)*sin((2*Pi*n)/3) + 3*(2*n*(4*n*(n+3)+21) + 9*i*sin(Pi*n) + 35) - 24*cos((2*Pi*n)/3) + 27*cos(Pi*n)). - Alexander R. Povolotsky, Mar 21 2011
Comments