cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188123 Number of strictly increasing arrangements of 4 nonzero numbers in -(n+2)..(n+2) with sum zero.

Original entry on oeis.org

1, 3, 8, 16, 31, 51, 80, 118, 167, 227, 302, 390, 495, 617, 758, 918, 1101, 1305, 1534, 1788, 2069, 2377, 2716, 3084, 3485, 3919, 4388, 4892, 5435, 6015, 6636, 7298, 8003, 8751, 9546, 10386, 11275, 12213, 13202, 14242, 15337, 16485, 17690, 18952, 20273, 21653
Offset: 0

Views

Author

R. H. Hardin Mar 21 2011

Keywords

Comments

Row 4 of A188122.

Examples

			Some solutions for n=6
.-6...-7...-8...-8...-5...-7...-6...-6...-7...-5...-8...-4...-5...-7...-7...-4
.-1...-2...-5...-2...-4...-2...-4...-4...-6...-4....1...-3...-2...-6...-3...-3
..3....4....5....2....2....1....4....3....6....4....2....3...-1....5....3....2
..4....5....8....8....7....8....6....7....7....5....5....4....8....8....7....5
a(0) = 1 with unique solution [-2, -1, 1, 2]. - _Michael Somos_, Apr 11 2011
		

Programs

  • PARI
    {a(n) = local(v, c, m); m = n+2; forvec( v = vector( 4, i, [-m, m]), if( 0==prod( k=1, 4, v[k]), next); if( 0==sum( k=1, 4, v[k]), c++), 2); c} /* Michael Somos, Apr 11 2011 */

Formula

Empirical: a(n)=2*a(n-1)-a(n-3)-a(n-4)+2*a(n-6)-a(n-7) = 35/36 +2*n^2/3 +7*n/6 +2*n^3/9 +(-1)^n/4 -2*A049347(n)/9.
Empirical: G.f. -x*(-3-2*x-2*x^3-2*x^5+x^6) / ( (1+x)*(1+x+x^2)*(x-1)^4 ). - R. J. Mathar, Mar 21 2011
Empirical: a(n) = 1/108*(8*sqrt(3)*sin((2*Pi*n)/3) + 3*(2*n*(4*n*(n+3)+21) + 9*i*sin(Pi*n) + 35) - 24*cos((2*Pi*n)/3) + 27*cos(Pi*n)). - Alexander R. Povolotsky, Mar 21 2011