cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188143 Binomial transform of A187848.

Original entry on oeis.org

1, 5, 29, 193, 1453, 12209, 113237, 1149241, 12675661, 151095569, 1937411429, 26614052617, 390244490749, 6087782363009, 100728768290645, 1762767028074937, 32542231109506285, 632202858036492593, 12895661952702667205
Offset: 0

Views

Author

Groux Roland, Mar 24 2011

Keywords

Comments

a(n) is also the INVERTi transform of A010842(n+1) starting at n=2.
a(n) is also the moment of order n for the measure of density: exp(x-2) / ((Ei(x-2))^2+Pi^2) over the interval 2..infinity with Ei the exponential integral.
More generally, for every integer k, the sequence a(n,k)=int(x^n*exp(x-k) / ((Ei(x-k))^2+Pi^2), x=k..infinity) is the INVERTi transform of the sequence b(n+1,k), starting at n=2, with b(n,k)=int(x^n*exp(x-k), x=k..infinity) whose e.g.f. is exp(k*x)/(1-x).

Crossrefs

Cf. A000023.

Programs

  • Maple
    with(LinearAlgebra):
    c:= proc(n) option remember; add(n!/k!, k=0..n) end:
    b:= n-> (-1)^(n+1) * Determinant(Matrix(n+2,
            (i, j)-> `if`(0<=i+1-j, c(i+1-j), 0))):
    a:= proc(n) add(b(k) *binomial(n,k), k=0..n) end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 24 2011
  • Mathematica
    c[n_] := c[n] = Sum[n!/k!, {k, 0, n}]; b[n_] := (-1)^(n+1)*Det[Table[If[0 <= i+1-j, c[i+1-j], 0], {i, 1, n+2}, {j, 1, n+2}]]; a[n_] := Sum[b[k] * Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 28 2017, after Alois P. Heinz *)

Formula

a(n) = Integral_{x=2..oo} x^n*exp(x-2)/((Ei(x-2))^2 + Pi^2) dx.
G.f.: 1/x^2 - 3/x - Q(0)/x^2, where Q(k) = 1 - 2*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
a(n) ~ exp(2) * n^2 * n!. - Vaclav Kotesovec, Nov 02 2023