A188143 Binomial transform of A187848.
1, 5, 29, 193, 1453, 12209, 113237, 1149241, 12675661, 151095569, 1937411429, 26614052617, 390244490749, 6087782363009, 100728768290645, 1762767028074937, 32542231109506285, 632202858036492593, 12895661952702667205
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..200
Crossrefs
Cf. A000023.
Programs
-
Maple
with(LinearAlgebra): c:= proc(n) option remember; add(n!/k!, k=0..n) end: b:= n-> (-1)^(n+1) * Determinant(Matrix(n+2, (i, j)-> `if`(0<=i+1-j, c(i+1-j), 0))): a:= proc(n) add(b(k) *binomial(n,k), k=0..n) end: seq(a(n), n=0..20); # Alois P. Heinz, Mar 24 2011
-
Mathematica
c[n_] := c[n] = Sum[n!/k!, {k, 0, n}]; b[n_] := (-1)^(n+1)*Det[Table[If[0 <= i+1-j, c[i+1-j], 0], {i, 1, n+2}, {j, 1, n+2}]]; a[n_] := Sum[b[k] * Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 28 2017, after Alois P. Heinz *)
Formula
a(n) = Integral_{x=2..oo} x^n*exp(x-2)/((Ei(x-2))^2 + Pi^2) dx.
G.f.: 1/x^2 - 3/x - Q(0)/x^2, where Q(k) = 1 - 2*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
a(n) ~ exp(2) * n^2 * n!. - Vaclav Kotesovec, Nov 02 2023
Comments