cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188146 Three interleaved 1st-order polynomials: a(3*n) = 1+4*n, a(1+3*n) = 3+4*n, a(2+3*n) = 1+n.

Original entry on oeis.org

1, 3, 1, 5, 7, 2, 9, 11, 3, 13, 15, 4, 17, 19, 5, 21, 23, 6, 25, 27, 7, 29, 31, 8, 33, 35, 9, 37, 39, 10, 41, 43, 11, 45, 47, 12, 49, 51, 13, 53, 55, 14, 57, 59, 15, 61, 63, 16, 65, 67, 17, 69, 71, 18, 73, 75, 19, 77, 79, 20, 81, 83, 21, 85, 87, 22, 89, 91, 23, 93, 95, 24, 97, 99, 25, 101, 103, 26, 105, 107, 27, 109, 111
Offset: 0

Views

Author

Paul Curtz, Mar 22 2011

Keywords

Programs

  • Mathematica
    CoefficientList[Series[(1+3x+x^2+3x^3+x^4)/((x-1)^2(1+x+x^2)^2), {x,0,85}],x] (* Harvey P. Dale, Apr 09 2011 *)
  • PARI
    Vec((1+3*x+x^2+3*x^3+x^4 ) / ((x-1)^2*(1+x+x^2)^2) + O(x^100)) \\ Colin Barker, Mar 06 2017

Formula

a(n)= 2*a(n-3) - a(n-6).
a(3*n) + a(1+3*n) + a(2+3*n) = 5+9*n.
a(n) = n + 1 - (-1)^n*A099254(n-1). - R. J. Mathar, Mar 31 2011
G.f.: ( 1+3*x+x^2+3*x^3+x^4 ) / ( (x-1)^2*(1+x+x^2)^2 ). - R. J. Mathar, Mar 31 2011
a(n) = (9*(n+1) + sqrt(3)*(3*n+4)*sin((2*Pi*n)/3) + 3*n*cos((2*Pi*n)/3)) / 9. - Colin Barker, Mar 06 2017