A188170 The number of divisors d of n of the form d == 3 (mod 8).
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 1, 0, 2, 0, 1, 1, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 0, 2, 1, 1, 1, 0, 0, 2, 0, 1, 1, 0, 1, 1, 1, 0, 1
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211.
- R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
Programs
-
Maple
sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc: A188170 := proc(n) sigmamr(n,8,3) ; end proc:
-
Mathematica
Table[Count[Divisors[n],?(Mod[#,8]==3&)],{n,100}] (* _Harvey P. Dale, Jul 08 2013 *)
-
PARI
a(n) = sumdiv(n, d, (d%8) == 3); \\ Michel Marcus, Nov 05 2018
Formula
G.f.: Sum_{k>=1} x^(3*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/8 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,8) - (1 - gamma)/8 = A256782 - (1 - A001620)/8 = 0.0314716... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
Comments