A002838
Balancing weights on the integer line.
Original entry on oeis.org
1, 2, 5, 12, 32, 94, 289, 910, 2934, 9686, 32540, 110780, 381676, 1328980, 4669367, 16535154, 58965214, 211591218, 763535450, 2769176514, 10089240974, 36912710568, 135565151486, 499619269774, 1847267563742, 6850369296298
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
(* This program is not convenient for large values of n *) a[n_] := Length[ IntegerPartitions[n*(n+1)/2, n, Range[n+1]]]; Table[ Print[{n, an = a[n]}]; an, {n, 1, 16}] (* Jean-François Alcover, Jan 02 2013 *)
A076822
Number of partitions of the n-th triangular number involving only the numbers 1..n and with exactly n terms.
Original entry on oeis.org
1, 1, 1, 2, 5, 12, 32, 94, 289, 910, 2934, 9686, 32540, 110780, 381676, 1328980, 4669367, 16535154, 58965214, 211591218, 763535450, 2769176514, 10089240974, 36912710568, 135565151486, 499619269774, 1847267563742, 6850369296298
Offset: 0
a(4)=5 as T(4)=10= 1+1+4+4 =1+2+3+4 = 1+3+3+3 = 2+2+2+4 = 2+2+3+3.
-
ccc=new Array(); cccc=0;
for (n=1; n<11; n++)
{
str='cc=0; for (i1=1; i1<'+(n+1)+'; i1++)';
str2='i1';
str3='i1';
tn=1;
for (i=2; i<=n; i++)
{
str+='for (i'+i+'=i'+(i-1)+'; i'+i+'<'+(n+1)+'; i'+i+'++)';
str2+='+i'+i;
str3+=', ", ", i'+i;
tn+=i;
}
str+='if ('+str2+'=='+tn+') document.print(++cc, ":", '+str3+', "
")';
eval(str);
ccc[cccc++ ]=cc;
document.print('****
');
}
document.write(ccc);
-
f[n_] := Block[{p = IntegerPartitions[n(n + 1)/2, n]}, Length[ Select[p, Length[ # ] == n &]]]; Table[ f[n], {n, 1, 13}]
A188183
Number of strictly increasing arrangements of 5 numbers in -(n+3)..(n+3) with sum zero.
Original entry on oeis.org
12, 32, 73, 141, 252, 414, 649, 967, 1394, 1944, 2649, 3523, 4604, 5910, 7483, 9343, 11538, 14090, 17053, 20451, 24342, 28754, 33751, 39361, 45654, 52662, 60459, 69079, 78602, 89064, 100551, 113101, 126804, 141702, 157891, 175413, 194370, 214808
Offset: 1
Some solutions for n=5
.-5...-8...-7...-8...-6...-4...-8...-6...-8...-5...-8...-7...-6...-6...-8...-7
.-3...-3...-4...-6...-2...-3...-7...-5...-2...-3...-2...-4...-5...-5...-1...-6
.-1...-2....0....0...-1...-1....4...-2....2...-1....1...-2....2...-3....1....1
..3....5....4....6....2....0....5....6....3....1....3....6....3....6....3....4
..6....8....7....8....7....8....6....7....5....8....6....7....6....8....5....8
A188185
Number of strictly increasing arrangements of 7 numbers in -(n+5)..(n+5) with sum zero.
Original entry on oeis.org
94, 289, 734, 1656, 3370, 6375, 11322, 19138, 30982, 48417, 73316, 108108, 155646, 219489, 303748, 413442, 554256, 733005, 957332, 1236222, 1579666, 1999265, 2507780, 3119876, 3851588, 4721127, 5748298, 6955424, 8366614, 10008857
Offset: 1
Some solutions for n=5
.-9...-7...-9..-10..-10..-10...-7...-9..-10..-10..-10..-10..-10...-9...-7..-10
.-7...-4...-7...-6...-7...-4...-6...-7...-3...-8...-5...-8...-8...-6...-6...-6
.-3...-2...-2...-5...-3...-3...-4...-4...-1...-2...-1...-7...-5...-1...-3...-5
.-1...-1....0....2....2...-1...-3....1....0...-1....1....3...-1....1...-2....1
..5....0....3....4....3....3....4....2....1....5....2....6....6....2....0....4
..6....6....6....7....6....7....7....8....4....7....4....7....8....4....8....7
..9....8....9....8....9....8....9....9....9....9....9....9...10....9...10....9
A188174
Number of strictly increasing arrangements of n numbers in -(2n-2)..(2n-2) with sum zero.
Original entry on oeis.org
1, 2, 8, 43, 252, 1636, 11322, 81805, 610358, 4672836, 36525052, 290399543, 2342043630, 19118822650, 157709971144, 1312796873451, 11015236989702, 93078467831012, 791462018168032, 6767910089071288, 58167781282121262
Offset: 1
Some solutions for n=5
.-8...-7...-4...-6...-6...-7...-8...-8...-5...-5...-7...-6...-5...-7...-4...-7
.-6...-4...-2...-5...-5...-2...-1...-3...-2...-2...-5...-4...-3...-3...-3...-4
.-1....1....0...-3....1....1....0...-1...-1...-1....0...-1...-1....2...-1....1
..7....4....2....6....3....3....1....5....0....1....4....3....3....3....3....2
..8....6....4....8....7....5....8....7....8....7....8....8....6....5....5....8
A188175
Number of strictly increasing arrangements of n numbers in -(n+1)..(n+1) with sum zero.
Original entry on oeis.org
1, 3, 8, 24, 73, 227, 734, 2430, 8150, 27718, 95514, 332578, 1168261, 4136477, 14749992, 52925886, 190973410, 692583902, 2523265494, 9231352260, 33901898722, 124940568222, 461938289518, 1713007181342, 6369928427268, 23747917426918
Offset: 1
Some solutions for n=5
.-6...-5...-3...-4...-6...-4...-5...-4...-5...-3...-5...-6...-6...-6...-6...-5
.-2...-1...-2...-3...-3...-2...-4...-3...-3...-2...-3...-1...-1...-3...-2...-3
..0....0...-1...-1....0....0....0....0....0...-1....0....0....0....1....1....1
..2....1....2....3....3....2....3....1....3....1....2....3....2....3....3....2
..6....5....4....5....6....4....6....6....5....5....6....4....5....5....4....5
A188176
Number of strictly increasing arrangements of n numbers in -(n+2)..(n+2) with sum zero.
Original entry on oeis.org
1, 4, 13, 43, 141, 480, 1656, 5744, 20094, 70922, 252117, 901723, 3243531, 11728606, 42611990, 155484150, 569585274, 2094177794, 7725489976, 28588154238, 106095329440, 394792407478, 1472734812454, 5506709078310, 20635115495666
Offset: 1
Some solutions for n=5
.-4...-5...-7...-5...-7...-6...-5...-3...-6...-6...-6...-4...-7...-7...-5...-6
.-3...-1...-2...-3...-5...-5...-4...-2...-4...-2...-3...-3...-2...-4...-4...-4
.-2....0....1...-2...-1....1...-1....0...-1....0...-1...-1....0....0...-3....2
..2....1....2....4....6....3....3....2....5....3....3....3....3....4....5....3
..7....5....6....6....7....7....7....3....6....5....7....5....6....7....7....5
A188177
Number of strictly increasing arrangements of n numbers in -(n+3)..(n+3) with sum zero.
Original entry on oeis.org
1, 5, 18, 69, 252, 920, 3370, 12346, 45207, 165821, 609734, 2247151, 8300708, 30734578, 114067100, 424306230, 1581788460, 5909243454, 22120325320, 82963636468, 311732564498, 1173377033602, 4424032482238, 16706682557212
Offset: 1
Some solutions for n=6
.-8...-8...-9...-8...-9...-8...-9...-6...-9...-8...-4...-9...-4...-9...-8...-8
.-4...-7...-1...-3...-2...-7...-3...-2...-3...-7...-3...-8...-3...-6...-5...-3
.-3...-1....0...-2....0...-4...-2...-1...-1...-3...-2....0...-2....1...-3...-1
.-1....4....1....0....1....2....2....0....3....2....2....3...-1....3....0....0
..7....5....3....5....2....8....5....1....4....7....3....6....3....5....7....5
..9....7....6....8....8....9....7....8....6....9....4....8....7....6....9....7
A188178
Number of strictly increasing arrangements of n numbers in -(n+4)..(n+4) with sum zero.
Original entry on oeis.org
1, 6, 25, 104, 414, 1636, 6375, 24591, 94257, 360002, 1371535, 5216252, 19819846, 75277670, 285893124, 1085984406, 4126777398, 15690144942, 59691687518, 227248928264, 865788366806, 3301087870766, 12596381911969, 48104063936789
Offset: 1
Some solutions for n=5
.-7...-4...-9...-9...-8...-8...-6...-6...-7...-5...-7...-9...-5...-9...-9...-5
.-5...-2...-2...-6...-4...-6...-4...-5...-6...-3...-4...-1...-3...-5...-5...-4
..0....0....2....3....1...-3...-2....0....0...-1...-3....0....0....2...-2....0
..5....1....4....5....2....8....4....3....5....4....6....3....3....4....7....4
..7....5....5....7....9....9....8....8....8....5....8....7....5....8....9....5
A188179
Number of strictly increasing arrangements of n numbers in -(n+5)..(n+5) with sum zero.
Original entry on oeis.org
1, 7, 32, 150, 649, 2739, 11322, 46029, 184717, 734517, 2900900, 11396054, 44585180, 173885716, 676537634, 2627337510, 10188889502, 39470938574, 152787805216, 591094837268, 2285918145819, 8838165075791, 34167434076214, 132084761317107
Offset: 1
Some solutions for n=5
.-4...-9...-9...-8...-7...-7..-10...-7..-10..-10...-9...-9..-10...-9...-6...-7
.-3...-7...-5...-5...-3...-3...-5...-3....0...-8...-4...-3...-7...-4...-2...-2
.-1....0...-2...-3....2...-1....2....1....1....2....1....0....3...-2....0....0
..0....7....7....7....3....3....4....3....4....6....5....2....4....5....3....2
..8....9....9....9....5....8....9....6....5...10....7...10...10...10....5....7
Showing 1-10 of 15 results.
Comments