A188289 Binomial sum related to rooted trees.
0, 2, 3, 14, 45, 167, 609, 2270, 8517, 32207, 122463, 467843, 1794195, 6903353, 26635773, 103020254, 399300165, 1550554583, 6031074183, 23493410759, 91638191235, 357874310213, 1399137067683, 5475504511859, 21447950506395, 84083979575117
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
GAP
List([0..30], n-> Binomial(2*n,n) -(-1)^n -Sum([0..n-1], k-> Binomial(2*k,n-1))); # G. C. Greubel, Apr 29 2019
-
Magma
[n eq 0 select 0 else Binomial(2*n, n) -(-1)^n - (&+[Binomial(2*k, n-1): k in [0..n-1]]): n in [0..30]]; // G. C. Greubel, Apr 29 2019
-
Mathematica
Table[Binomial[2n,n]-(-1)^n-Sum[Binomial[2k,n-1],{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, Dec 10 2012 *)
-
PARI
{a(n) = binomial(2*n,n) -(-1)^n -sum(k=0,n-1, binomial(2*k,n-1))}; \\ G. C. Greubel, Apr 29 2019
-
Sage
[binomial(2*n,n) -(-1)^n -sum(binomial(2*k, n-1) for k in (0..n-1)) for n in (0..30)] # G. C. Greubel, Apr 29 2019
Formula
a(n) = binomial(2*n,n) - (-1)^n - Sum_{k=0..n-1} binomial(2*k, n-1).
a(n) = Sum_{k=1..n} binomial(n+k,k)*(Sum_{r=n-k..n} (-1)^r*binomial(n-k, r)).
a(n) = (-1)^n*2^(-(1+n))*(1 - 2^(1+n) + (-2)^n*binomial(2+2*n, 1+n) * hypergeometric2F1(1, 2+2*n; 2+n; -1)).