A188365 a(n) = n! * [x^n] exp((1 - 2*x)/(1 - 3*x + x^2) - 1).
1, 1, 5, 43, 505, 7421, 130501, 2668975, 62197073, 1626103225, 47116726021, 1498191224531, 51855200633545, 1940384578283893, 78042911672096645, 3357060094366363351, 153771739817047383841, 7471843888639307665265, 383835896530177022152453, 20783664252941721959512315
Offset: 0
Keywords
Links
- Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
Programs
-
Maple
gf := exp((1 - 2*x)/(1 - 3*x + x^2) - 1): ser := series(gf, x, 22): seq(k!*coeff(ser, x, k), k=0..19); # Peter Luschny, Jul 30 2020
-
PARI
f(n,m) = sum(k=m, n, binomial(n-1,k-1) * sum(i=ceil((k-m)/2), k-m, binomial(i,k-m-i)*binomial(m+i-1,m-1))); \\ A188137 a(n) = if (n, n!*sum(k=1, n, f(n,k)/k!), 1); \\ Michel Marcus, Jul 30 2020
-
PARI
my(x='x+O('x^25)); Vec(serlaplace(exp((1-2*x)/(1-3*x+x^2)-1))) \\ Joerg Arndt, Jul 30 2020
Formula
Extensions
More terms from Michel Marcus, Jul 30 2020