cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188409 Number of (8*n) X n binary arrays with rows in nonincreasing order, 8 ones in every column and no more than 2 ones in any row.

Original entry on oeis.org

1, 1, 9, 215, 13825, 1865715, 472211360, 205617134345, 144413237202513, 155491132440121969, 246331815235550280739, 555051611796729847585857, 1728979263188082473586904451, 7267279122553798970928760164349, 40366145202716102133415620482175732, 290962702320861139000003963988839815695
Offset: 0

Views

Author

R. H. Hardin, Mar 30 2011

Keywords

Comments

Number of n X n symmetric matrices with nonnegative integer entries and all row and column sums 8. - Andrew Howroyd, Apr 07 2020

Examples

			All solutions for 16X2
..1..1....1..1....1..1....1..1....1..1....1..1....1..1....1..0....1..1
..1..1....1..1....1..1....1..0....1..1....1..1....1..1....1..0....1..1
..1..1....1..1....1..1....1..0....1..1....1..0....1..1....1..0....1..1
..1..1....1..1....1..1....1..0....1..1....1..0....1..1....1..0....1..0
..1..1....1..1....1..1....1..0....1..1....1..0....1..0....1..0....1..0
..1..0....1..1....1..1....1..0....1..1....1..0....1..0....1..0....1..0
..1..0....1..0....1..1....1..0....1..1....1..0....1..0....1..0....1..0
..1..0....1..0....1..0....1..0....1..1....1..0....1..0....1..0....1..0
..0..1....0..1....0..1....0..1....0..0....0..1....0..1....0..1....0..1
..0..1....0..1....0..0....0..1....0..0....0..1....0..1....0..1....0..1
..0..1....0..0....0..0....0..1....0..0....0..1....0..1....0..1....0..1
..0..0....0..0....0..0....0..1....0..0....0..1....0..1....0..1....0..1
..0..0....0..0....0..0....0..1....0..0....0..1....0..0....0..1....0..1
..0..0....0..0....0..0....0..1....0..0....0..1....0..0....0..1....0..0
..0..0....0..0....0..0....0..1....0..0....0..0....0..0....0..1....0..0
..0..0....0..0....0..0....0..0....0..0....0..0....0..0....0..1....0..0
		

Crossrefs

Row 8 of A188403.

Extensions

a(0)=1 prepended and terms a(9) and beyond from Andrew Howroyd, Apr 06 2020