A188430 a(n) is the maximum of the largest elements of all n-full sets, or 0 if no such set exists.
1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 6, 7, 7, 8, 6, 7, 8, 9, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38
Offset: 1
Links
- Mohammad Saleh Dinparvar, Python program (github)
- L. Naranjani and M. Mirzavaziri, Full Subsets of N, Journal of Integer Sequences, 14 (2011), Article 11.5.3.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Haskell
a188430 n = a188430_list !! (n-1) a188430_list = [1, 0, 2, 0, 0, 3, 4, 0, 0, 4, 5, 6, 7, 7, 8, 6, 7, 8, 9] ++ (drop 19 a008619_list) -- Reinhard Zumkeller, Aug 06 2015
-
Mathematica
LinearRecurrence[{1,1,-1},{1,0,2,0,0,3,4,0,0,4,5,6,7,7,8,6,7,8,9,10,11,11},80] (* Harvey P. Dale, Jul 24 2021 *)
-
PARI
Vec(x*(1 - x + x^2 - x^3 - 2*x^4 + 5*x^5 + x^6 - 7*x^7 - x^8 + 8*x^9 + x^10 - 3*x^11 - x^13 - 2*x^15 + 3*x^17 - x^21) / ((1 - x)^2*(1 + x)) + O(x^80)) \\ Colin Barker, May 11 2020
Formula
a(n) = ceiling(n/2) for n >= 20.
From Colin Barker, May 11 2020: (Start)
G.f.: x*(1 - x + x^2 - x^3 - 2*x^4 + 5*x^5 + x^6 - 7*x^7 - x^8 + 8*x^9 + x^10 - 3*x^11 - x^13 - 2*x^15 + 3*x^17 - x^21) / ((1 - x)^2*(1 + x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>22.
(End)
Comments