cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188442 Expansion of -(sqrt(-3*x^2-2*x+1)-x-1)/(2*sqrt(-3*x^2-2*x+1)+2*x).

Original entry on oeis.org

0, 1, 1, 3, 6, 16, 39, 103, 269, 721, 1941, 5285, 14476, 39918, 110633, 308081, 861390, 2417264, 6805477, 19216297, 54404562, 154402264, 439172189, 1251701837, 3574234089, 10223988665, 29292665059, 84052426683, 241518890124, 694900077226
Offset: 0

Views

Author

Vladimir Kruchinin, Apr 20 2011

Keywords

Comments

Apparently for n>0 the number of grand Motzkin paths of length n-1 that avoid flat steps at level 1. - David Scambler, Jul 04 2013
a(n) is the number of increasing unary-binary trees with associated permutation that simultaneously avoids 213 and 312. For more information about increasing unary-binary trees with an associated permutation, see A245888. - Manda Riehl, Aug 22 2014

Crossrefs

A000984 is the sequence of the odd-indexed terms of a(n).

Programs

  • Mathematica
    a[n_] := Sum[ k*Fibonacci[k]*Sum[ Binomial[-k+2*j-1, j-1]*(-1)^(n-j)*Binomial[n, j], {j, k, n}], {k, 1, n}]/n; a[0] = 0; Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Jun 14 2013, translated from Maxima *)
  • Maxima
    a(n):=sum(k*fib(k)*sum(binomial(-k+2*j-1,j-1)*(-1)^(n-j)*binomial(n,j),j,k,n),k,1,n)/n;
    
  • PARI
    x='x+O('x^66);
    gf=-(sqrt(-3*x^2-2*x+1)-x-1)/(2*sqrt(-3*x^2-2*x+1)+2*x); /* = 0 +x +x^2 +3*x^3 +... */
    Vec(gf) /* Joerg Arndt, Apr 21 2011 */

Formula

G.f.: A000045(x*A005043(x))
a(n)=sum(k=1..n,k*A000045(k)*sum(j=k..n, binomial(-k+2*j-1,j-1)*(-1)^(n-j)*binomial(n,j)))/n.
a(n)=sum(k=1..n, T097609(n,k)*A000045(k)).
D-finite with recurrence n*(5*n-2)*a(n) +(-20*n^2+23*n-12)*a(n-1) +3*(-5*n^2+7*n+20)*a(n-2) +2*(35*n^2-89*n-12)*a(n-3) +12*(5*n+3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 23 2017