A188464 Diagonal sums of triangle A188463.
1, 3, 8, 22, 62, 178, 519, 1533, 4578, 13800, 41937, 128345, 395232, 1223792, 3807903, 11900549, 37339043, 117574429, 371429284, 1176876762, 3739129185, 11909686261, 38022182028, 121648373964, 389979453010, 1252517211660, 4029754366713, 12986073134365
Offset: 0
Examples
For n=1, Dyck 4-paths are (2,-1,2,-3), (3,-1,1,-3) and (3,-2,1,-2), a(1) = 3.
References
- S. Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, Discrete Math., 344 (2021), no. 6, 112364.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- S. Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020, see Theorem 2.1 for t=0 and r=1.
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-3*x+x^2-x^3-(1-x)*Sqrt(1-4*x+2*x^2 +x^4))/( 2*x^4) )); -
Mathematica
CoefficientList[Series[(1-3*x+x^2-x^3-(1-x)*Sqrt[1-4*x+2*x^2+x^4])/( 2*x^4), {x,0,30}], x] (* G. C. Greubel, Nov 16 2018 *)
-
Maxima
a(n):=sum((binomial(2*m,m)*binomial(n+m+1,3*m-1))/(m+1),m,1,(n+2)/2); /* Vladimir Kruchinin, Jan 24 2022 */
-
PARI
x='x+O('x^30); Vec((1-3*x+x^2-x^3-(1-x)*sqrt(1-4*x+2*x^2 +x^4))/( 2*x^4)) \\ G. C. Greubel, Nov 16 2018
-
Sage
s=((1-3*x+x^2-x^3-(1-x)*sqrt(1-4*x+2*x^2+x^4))/( 2*x^4)).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 16 2018
Formula
G.f.: (1-3*x+x^2-x^3-(1-x)*sqrt(1-4*x+2*x^2+x^4))/(2*x^4).
Conjecture: (n+4)*a(n)-(4*n+9)*a(n-1) +(2*n-1)*a(n-2) -a(n-3) +(n-3)*a(n-4)=0. - R. J. Mathar, Nov 17 2011
a(n) = Sum_{m=1..floor((n+2)/2)} C(2*m,m)/(m+1)*C(n+m+1,3*m-1). - Vladimir Kruchinin, Jan 24 2022
Comments