cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188464 Diagonal sums of triangle A188463.

Original entry on oeis.org

1, 3, 8, 22, 62, 178, 519, 1533, 4578, 13800, 41937, 128345, 395232, 1223792, 3807903, 11900549, 37339043, 117574429, 371429284, 1176876762, 3739129185, 11909686261, 38022182028, 121648373964, 389979453010, 1252517211660, 4029754366713, 12986073134365
Offset: 0

Views

Author

Paul Barry, Apr 01 2011

Keywords

Comments

Apparently, number of Dyck (n+3)-paths with no descent having the same length as the preceding ascent. - David Scambler, Apr 28 2012 (Proved by S. Elizalde, Disc. Math., 2021)

Examples

			For n=1, Dyck 4-paths are (2,-1,2,-3), (3,-1,1,-3) and (3,-2,1,-2), a(1) = 3.
		

References

  • S. Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, Discrete Math., 344 (2021), no. 6, 112364.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-3*x+x^2-x^3-(1-x)*Sqrt(1-4*x+2*x^2 +x^4))/( 2*x^4) ));
    
  • Mathematica
    CoefficientList[Series[(1-3*x+x^2-x^3-(1-x)*Sqrt[1-4*x+2*x^2+x^4])/( 2*x^4), {x,0,30}], x] (* G. C. Greubel, Nov 16 2018 *)
  • Maxima
    a(n):=sum((binomial(2*m,m)*binomial(n+m+1,3*m-1))/(m+1),m,1,(n+2)/2); /* Vladimir Kruchinin, Jan 24 2022 */
  • PARI
    x='x+O('x^30); Vec((1-3*x+x^2-x^3-(1-x)*sqrt(1-4*x+2*x^2 +x^4))/( 2*x^4)) \\ G. C. Greubel, Nov 16 2018
    
  • Sage
    s=((1-3*x+x^2-x^3-(1-x)*sqrt(1-4*x+2*x^2+x^4))/( 2*x^4)).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 16 2018
    

Formula

G.f.: (1-3*x+x^2-x^3-(1-x)*sqrt(1-4*x+2*x^2+x^4))/(2*x^4).
Conjecture: (n+4)*a(n)-(4*n+9)*a(n-1) +(2*n-1)*a(n-2) -a(n-3) +(n-3)*a(n-4)=0. - R. J. Mathar, Nov 17 2011
a(n) = Sum_{m=1..floor((n+2)/2)} C(2*m,m)/(m+1)*C(n+m+1,3*m-1). - Vladimir Kruchinin, Jan 24 2022