A188532 Numbers which contain only the digit 5 in their base-6 representation, with at most one exception. If the exception is the most-significant digit, it must be the digit 1, 2, 3, or 4, otherwise the exception must be the digit 4.
1, 2, 3, 4, 5, 11, 17, 23, 29, 34, 35, 71, 107, 143, 179, 209, 214, 215, 431, 647, 863, 1079, 1259, 1289, 1294, 1295, 2591, 3887, 5183, 6479, 7559, 7739, 7769, 7774, 7775, 15551, 23327, 31103, 38879, 45359, 46439, 46619, 46649, 46654, 46655, 93311, 139967
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- V. Shevelev, Binomial Coefficient Predictors, Journal of Integer Sequences, Vol. 14 (2011), Article 11.2.8
Programs
-
Maple
a:= proc(n) option remember; local i, l, m, t; m:= `if`(n=1, 0, a(n-1)); l:=NULL; for t while m>0 do l:=l, irem(m, 6, 'm') od; l:= array([l, 0]); for i while l[i]=5 do od; if l[i]<4 then l[i]:= l[i]+1 else l[i]:= 5; if i>1 then l[i-1]:= 4 fi fi; add(l[i] *6^(i-1), i=1..t) end: seq(a(n), n=1..100); # Alois P. Heinz, Apr 03 2011
Comments