cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188547 Numbers n such that m=(n^2+1)/2, p=(m^2+1)/2, q=(p^2+1)/2, and r=(q^2+1)/2 are all prime.

Original entry on oeis.org

4949, 6051, 169219, 183241, 560769, 1113621, 1306689, 1370269, 1421869, 1485561, 1640711, 1730709, 1876351, 1967769, 2147661, 2217351, 2293939, 2428461, 2440871, 3346661, 3625139, 3625889, 3763969, 3991209, 4020711, 4728141, 5219691, 5547221, 5554939, 5965699, 7345719, 8495879
Offset: 1

Views

Author

Zak Seidov, Apr 03 2011

Keywords

Comments

a(1) = 4949 = A188546(6) = A116945(53).
Subsequence of A188546.
Numbers n which generate 4 primes under the first four iterations of the map n-> A002731(n).
Among first 10000 terms, there are 1072 primes, the first a(3) = 169219 and the last a(10000) = 16541600731. - Zak Seidov, Jan 16 2019

Crossrefs

Programs

  • Magma
    r:=func< k | (k^2+1) div 2 >; [ n: n in [1..1000000 by 2] | IsPrime(r(n)) and IsPrime(r(r(n))) and IsPrime(r(r(r(n))))and IsPrime(r(r(r(r(n)))))]; // Vincenzo Librandi, Jan 16 2019
  • Mathematica
    s={}; Do[If[PrimeQ[m=(n^2+1)/2] && PrimeQ[p=(m^2+1)/2] && PrimeQ[q=(p^2+1)/2] && PrimeQ[r=(q^2+1)/2], AppendTo[s,n]], {n,1,10000000,2}]; s
  • PARI
    v=vector(10^4); i=0; forstep(n=1, 9e99, 2, if(isprime(m=(n^2+1)/2) && isprime(p=(m^2+1)/2) && isprime(q=(p^2+1)/2) && isprime(r=(q^2+1)/2), v[i++]=n; if(i==#v, return))) \\ Charles R Greathouse IV, Apr 12 2011