A188547 Numbers n such that m=(n^2+1)/2, p=(m^2+1)/2, q=(p^2+1)/2, and r=(q^2+1)/2 are all prime.
4949, 6051, 169219, 183241, 560769, 1113621, 1306689, 1370269, 1421869, 1485561, 1640711, 1730709, 1876351, 1967769, 2147661, 2217351, 2293939, 2428461, 2440871, 3346661, 3625139, 3625889, 3763969, 3991209, 4020711, 4728141, 5219691, 5547221, 5554939, 5965699, 7345719, 8495879
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000, replacing an earlier file from Zak Seidov
Programs
-
Magma
r:=func< k | (k^2+1) div 2 >; [ n: n in [1..1000000 by 2] | IsPrime(r(n)) and IsPrime(r(r(n))) and IsPrime(r(r(r(n))))and IsPrime(r(r(r(r(n)))))]; // Vincenzo Librandi, Jan 16 2019
-
Mathematica
s={}; Do[If[PrimeQ[m=(n^2+1)/2] && PrimeQ[p=(m^2+1)/2] && PrimeQ[q=(p^2+1)/2] && PrimeQ[r=(q^2+1)/2], AppendTo[s,n]], {n,1,10000000,2}]; s
-
PARI
v=vector(10^4); i=0; forstep(n=1, 9e99, 2, if(isprime(m=(n^2+1)/2) && isprime(p=(m^2+1)/2) && isprime(q=(p^2+1)/2) && isprime(r=(q^2+1)/2), v[i++]=n; if(i==#v, return))) \\ Charles R Greathouse IV, Apr 12 2011
Comments