A188555 Number of 4 X n binary arrays without the pattern 0 1 diagonally, vertically, antidiagonally or horizontally.
1, 5, 9, 16, 28, 48, 80, 129, 201, 303, 443, 630, 874, 1186, 1578, 2063, 2655, 3369, 4221, 5228, 6408, 7780, 9364, 11181, 13253, 15603, 18255, 21234, 24566, 28278, 32398, 36955, 41979, 47501, 53553, 60168, 67380, 75224, 83736, 92953, 102913, 113655, 125219
Offset: 0
Examples
Some solutions for 4 X 3: 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 For these solutions, the corresponding words are 221, 432, 222, 443, 100, 333, 110. - _Miquel A. Fiol_, Feb 06 2024
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 1..200 from R. H. Hardin)
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A188553.
Formula
Empirical: a(n) = (1/24)*n^4 - (1/12)*n^3 + (23/24)*n^2 + (13/12)*n + 3.
Conjectures from Colin Barker, Apr 27 2018: (Start)
G.f.: -(2*x^5 - 7*x^4 + 11*x^3 - 6*x^2 + 1)/(x - 1)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5. (End)
Extensions
a(0)=1 prepended by Alois P. Heinz, Feb 10 2024
Comments