cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A377109 a(n) = coefficient of the term that is independent of sqrt(2), sqrt(3), and sqrt(6) in the expansion of (2 + sqrt(2) + sqrt(3))^n.

Original entry on oeis.org

1, 2, 9, 38, 185, 922, 4689, 23998, 123217, 633458, 3258489, 16765718, 86273225, 443967370, 2284733313, 11757749038, 60508271137, 311391065570, 1602499602537, 8246883961094, 42440638964825, 218410733951098, 1123999345270833, 5784397706237854
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2024

Keywords

Comments

Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 7 primes, with respective period lengths 1,5,7,17,3,11,35 and these periods:
p = 2: (4)
p = 3: (8, 1, 4, 3, 8)
p = 5: (10, 20, 9, 8, 32, 21, 20)
p = 7: (2, 30, 9, 19, 6, 28, 12, 5, 16, 26, 22, 13, 2, 1, 24, 16, 57)
p = 11: (61, 29, 70)
p = 13: (9, 15, 24, 3, 21, 21, 3, 24, 15, 9, 24)
p = 17: (30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 1, 29, 29, 1, 30, 30, 30, 30, 2, 28, 30, 30, 28, 2, 17, 13, 30, 30, 30, 13, 17)
Guide to related sequences:
(1 + sqrt (2) + sqrt (3))^n, coefficients of absolute terms: A188570
(1 + sqrt (2) + sqrt (3))^n, coefficients of sqrt(2): A188571
(1 + sqrt (2) + sqrt (3))^n, coefficients of sqrt(3): A188572
(1 + sqrt (2) + sqrt (3))^n, coefficients of sqrt(6): A188573
(2 + sqrt (2) + sqrt (3))^n, coefficients of independent terms: this sequence
(2 + sqrt (2) + sqrt (3))^n, coefficients of sqrt(2): A377110
(2 + sqrt (2) + sqrt (3))^n, coefficients of sqrt(3): A377111
(2 + sqrt (2) + sqrt (3))^n, coefficients of sqrt(6): A377112
(3 + sqrt (2) + sqrt (3))^n, coefficients of independent terms: A377113
(3 + sqrt (2) + sqrt (3))^n, coefficients of sqrt(2): A377114
(3 + sqrt (2) + sqrt (3))^n, coefficients of sqrt(3): A377115
(3 + sqrt (2) + sqrt (3))^n, coefficients of sqrt(6): A377116
(2^(1/3) + 2^(2/3))^n, coefficients of independent terms: A377117
(2^(1/3) + 2^(2/3))^n, coefficients of 2^(1/3): A377118
(2^(1/3) + 2^(2/3))^n, coefficients of 2^(2/3): A377119
(1 + 2^(1/3) + 2^(2/3))^n, coefficients of independent terms: A377314
(1 + 2^(1/3) + 2^(2/3))^n, coefficients of 2^(1/3): A377315

Examples

			(2 + sqrt(2) + sqrt(3))^3 = 9 + 4*sqrt(2) + 4*sqrt(3) + 2*sqrt(6), so a(3) = 9.
		

Crossrefs

Programs

  • Mathematica
    (* Program 1 generates sequences A377109-A377112. *)
    tbl = Table[Expand[(2 + Sqrt[2] + Sqrt[3])^n], {n, 0, 24}];
    u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
       Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
    {s1, s2, s3, s4} = Transpose[(PadRight[#1, 4] &) /@ Last /@ u][[1 ;; 4]];
    s1  (* Peter J. C. Moses, Oct 16 2024 *)
    (* Program 2 generates this sequence. *)
    LinearRecurrence[{8, -14, -8, 23}, {1, 2, 9, 38}, 15]
    (* Program 3 confirms the periodicity properties described in Comments. *)
    tbl = Table[Expand[(2 + Sqrt[2] + Sqrt[3])^n], {n, 0, 1000}];
    u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
      Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
    v = {s1, s2, s3, s4} = Transpose[(PadRight[#1, 4] &) /@ Last /@ u][[1 ;; 4]];
    Position[Partition[list, Length[#], 1], Flatten[{_, #, _}]] &[seqtofind];
    period[seq_] := (If[Last[#1] == {} || Length[#1] == Length[seq] - 1,
      0, Length[#1]] &)[NestWhileList[Rest, Rest[seq], #1 != Take[seq, Length[#1]] &, 1]];
    periodicityReport[seq_] := ({Take[seq, Length[seq] - Length[#1]], period[#1],
          Take[#1, period[#1]]} &)[Take[seq, -Length[
          NestWhile[Rest[#1] &, seq, period[#1] == 0 &, 1, Length[seq]]]]];
    seq = s1; Take[seq, 10]
    f[n_] := Flatten[Position[Mod[s1, Prime[n]], 0]];
    d[n_] := Differences[f[n]];
    Table[Take[f[n], 10], {n, 2, 4}]
    Table[Take[d[n], 10], {n, 2, 4}]
    Column[Table[{n, Prime[n], periodicityReport[d[Prime[n]]]}, {n, 1, 8}]]
    (* Peter J. C. Moses, Aug 07 2014, Oct 16 2024 *)

Formula

a(n) = 8*a(n-1) - 14*a(n-2) - 8*a(n-3) + 23*a(n-4), with a(0)=1, a(1)=2, a(3)=9, a(4)=38.
G.f.: (-1 + 6 x - 7 x^2 - 2 x^3)/(-1 + 8 x - 14 x^2 - 8 x^3 + 23 x^4).

A188571 a(n) = coefficient of sqrt(2) in the expansion of (1 + sqrt(2) + sqrt(3))^n.

Original entry on oeis.org

0, 1, 2, 14, 48, 224, 880, 3760, 15360, 64192, 265088, 1101440, 4561920, 18925568, 78447616, 325313536, 1348730880, 5592420352, 23187169280, 96141172736, 398624489472, 1652807303168, 6852965761024, 28414229807104, 117812861337600, 488483370827776
Offset: 0

Views

Author

Mateusz Szymański, Dec 28 2012

Keywords

Comments

From Clark Kimberling, Oct 23 2024: (Start)
Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 6 primes, with respective period lengths 4,8,14,3,3,5 and these periods:
p = 2: (4)
p = 3: (6, 1, 1, 3, 1, 4, 2, 6)
p = 5: (6, 6, 6, 2, 4, 6, 1, 5, 4, 1, 1, 6, 6, 6)
p = 7: (9, 18, 9)
p = 11: (43, 10, 11)
p = 13: (21, 7, 28, 7, 21)
See A377109 for a guide to related sequences. (End)

Examples

			a(3) = 14 because (1+sqrt(2)+sqrt(3))^3 = 16 + 14*sqrt(2) + 12*sqrt(3) + 6*sqrt(6).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Sum[2^(Floor[(n - 1)/2] - k - j) 3^j Multinomial[2 Floor[(n - 1)/2] + 1 - 2 j - 2 k, 2 j, 2 k + 1 - n + 2 Floor[n/2]], {j, 0, Floor[(n - 1)/2] - k + 1}], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
    a[n_] := Coefficient[ Expand[(1 + Sqrt[2] + Sqrt[3])^n], Sqrt[2]] /. Sqrt[3] -> 0; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 08 2013 *)

Formula

Conjectures from Colin Barker, Jan 08 2013: (Start)
a(n) = 4*a(n-1) + 4*a(n-2) - 16*a(n-3) + 8*a(n-4).
G.f.: -x*(2*x^2-2*x+1) / (8*x^4-16*x^3+4*x^2+4*x-1). (End)
The conjectures by Barker are true. See link. - Sela Fried, Jan 01 2025

Extensions

Edited by Clark Kimberling, Oct 20 2024

A188572 a(n) = coefficient of sqrt(3) in the expansion of (1 + sqrt(2) + sqrt(3))^n sequence.

Original entry on oeis.org

0, 1, 2, 12, 40, 184, 720, 3072, 12544, 52416, 216448, 899328, 3724800, 15452672, 64052224, 265617408, 1101234176, 4566192128, 18932244480, 78498938880, 325475532800, 1349511512064, 5595423113216, 23200121487360, 96193798471680, 398845002121216
Offset: 0

Views

Author

Mateusz Szymański, Dec 28 2012

Keywords

Comments

From Clark Kimberling, Oct 23 2024: (Start)
Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 6 primes, with respective period lengths 6,8,5,4,4,8 and these periods:
p = 2: (3, 3, 1, 2, 2, 1)
p = 3: (4, 2, 6, 6, 1, 1, 3, 1)
p = 5: (20, 20, 9, 10, 1)
p = 7: (18, 1, 16, 1)
p = 11: (32, 1, 30, 1)
p = 13: (28, 14, 1, 10, 3, 17, 10, 1)
See A377109 for a guide to related sequences. (End)
Cf. A377109.

Examples

			a(3) = 12 because (1+sqrt(2)+sqrt(3))^3 = 16 + 14*sqrt(2) + 12*sqrt(3) + 6*sqrt(6).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Sum[3^(Floor[(n - 1)/2] - k - j) 2^j Multinomial[2 Floor[(n - 1)/2] + 1 - 2 j - 2 k, 2 j, 2 k + 1 - n + 2 Floor[n/2]], {j, 0, Floor[(n - 1)/2] - k + 1}], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 25}]
    a[n_] := Coefficient[ Expand[(1 + Sqrt[2] + Sqrt[3])^n], Sqrt[3]] /. Sqrt[2] -> 0; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 08 2013 *)

Formula

Conjectures from R. J. Mathar, Jan 09 2013: (Start)
a(n) = +4*a(n-1) +4*a(n-2) -16*a(n-3) +8*a(n-4).
G.f.: x*(-1+2*x)/( -1+4*x+4*x^2-16*x^3+8*x^4 ). (End)
The conjectures by Mathar are true. See link. - Sela Fried, Jan 01 2025

Extensions

Edited by Clark Kimberling, Oct 20 2024

A188573 a(n) = coefficient of the sqrt(6) term in (1 + sqrt(2) + sqrt(3))^n.

Original entry on oeis.org

0, 0, 2, 6, 32, 120, 528, 2128, 8960, 36864, 153472, 635008, 2635776, 10922496, 45300736, 187800576, 778731520, 3228696576, 13387309056, 55506722816, 230146834432, 954246856704, 3956565671936, 16404954546176, 68019305840640, 282025965649920
Offset: 0

Views

Author

Mateusz Szymański, Dec 28 2012

Keywords

Comments

From Clark Kimberling, Oct 23 2024: (Start)
Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 6 primes, with respective period lengths 6,5,14,4,4,8 and these periods:
p = 2: (1, 2, 2, 1, 3, 3)
p = 3: (1, 4, 3, 8, 8)
p = 5: (1, 5, 4, 1, 1, 6, 6, 6, 6, 6, 6, 2, 4, 6)
p = 7: (1, 16, 1, 18)
p = 11: (1, 30, 1, 32)
p = 13: (1, 10, 3, 17, 10, 1, 28, 14)
See A377109 for a guide to related sequences. (End)

Examples

			a(3) = 6, because (1+sqrt(2)+sqrt(3))^3 = 16 + 14 sqrt(2) + 12 sqrt(3) + 6 sqrt(6).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Sum[2^(Floor[n/2] - j - 1 - k) 3^j Multinomial[2 k + n - 2 Floor[n/2], 2 j + 1, 2 Floor[n/2] - 2 k - 1 - 2 j], {j, 0, Floor[n/2] - k - 1}], {k, 0, Floor[n/2] - 1}]; Table[a[n], {n, 0, 25}]
    a[n_] := Coefficient[ Expand[(1 + Sqrt[2] + Sqrt[3])^n], Sqrt[6]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 08 2013 *)

Formula

From G. C. Greubel, Apr 10 2018: (Start)
Empirical: a(n) = 4*a(n-1) + 4*a(n-2) - 16*a(n-3) + 8*a(n-4).
Empirical: G.f.: 2*x^2*(1-x)/(1 - 4*x - 4*x^2 + 16*x^3 - 8*x^4). (End)
The conjectures by Greubel are true. See link. - Sela Fried, Jan 01 2025

Extensions

Keyword tabl removed by Michel Marcus, Apr 11 2018
Edited by Clark Kimberling, Oct 23 2024
Showing 1-4 of 4 results.