A188573 a(n) = coefficient of the sqrt(6) term in (1 + sqrt(2) + sqrt(3))^n.
0, 0, 2, 6, 32, 120, 528, 2128, 8960, 36864, 153472, 635008, 2635776, 10922496, 45300736, 187800576, 778731520, 3228696576, 13387309056, 55506722816, 230146834432, 954246856704, 3956565671936, 16404954546176, 68019305840640, 282025965649920
Offset: 0
Keywords
Examples
a(3) = 6, because (1+sqrt(2)+sqrt(3))^3 = 16 + 14 sqrt(2) + 12 sqrt(3) + 6 sqrt(6).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
- Sela Fried, On the coefficients of (r + sqrt(p) + sqrt(q))^n
- Index entries for linear recurrences with constant coefficients, signature (4,4,-16,8).
Programs
-
Mathematica
a[n_] := Sum[Sum[2^(Floor[n/2] - j - 1 - k) 3^j Multinomial[2 k + n - 2 Floor[n/2], 2 j + 1, 2 Floor[n/2] - 2 k - 1 - 2 j], {j, 0, Floor[n/2] - k - 1}], {k, 0, Floor[n/2] - 1}]; Table[a[n], {n, 0, 25}] a[n_] := Coefficient[ Expand[(1 + Sqrt[2] + Sqrt[3])^n], Sqrt[6]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 08 2013 *)
Formula
From G. C. Greubel, Apr 10 2018: (Start)
Empirical: a(n) = 4*a(n-1) + 4*a(n-2) - 16*a(n-3) + 8*a(n-4).
Empirical: G.f.: 2*x^2*(1-x)/(1 - 4*x - 4*x^2 + 16*x^3 - 8*x^4). (End)
The conjectures by Greubel are true. See link. - Sela Fried, Jan 01 2025
Extensions
Keyword tabl removed by Michel Marcus, Apr 11 2018
Edited by Clark Kimberling, Oct 23 2024
Comments