cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188597 Odd deficient numbers whose abundancy is closer to 2 than any smaller odd deficient number.

Original entry on oeis.org

1, 3, 9, 15, 45, 105, 315, 1155, 26325, 33705, 449295, 1805475, 10240425, 13800465, 16029405, 16286445, 21003885, 32062485, 132701205, 594397485, 815634435, 29169504045, 40833636525, 295612416135, 636988686495, 660733931655, 724387847085, 740099543085, 1707894294975, 4439852974095, 7454198513685
Offset: 1

Views

Author

T. D. Noe, Apr 05 2011

Keywords

Comments

The abundancy of a number k is defined as A(k) = sigma(k)/k. Deficient numbers have an abundancy less than 2. This sequence has terms in common with A171929. Sequence A188263, which deals with abundant numbers, approaches 2 from above. The similar sequence for even numbers consists of the powers of 2.
a(29) > 10^12. - Donovan Johnson, Apr 08 2011
This sequence is finite iff there is an odd perfect number (which would have abundancy 2). Otherwise, one always has a subsequent term a(n+1) <= a(n)*p where p is the smallest prime not dividing a(n) and larger than 1/(2/A(a(n))-1). Indeed, such an a(n)*p is still deficient but has abundancy larger than a(n), thus closer to 2. - M. F. Hasler, Feb 22 2017
From M. F. Hasler, Jan 25 2020: (Start)
The upper bounds a(n)*p mentioned above are often terms of the sequence, but not the subsequent but a later one: e.g., 9*5 = 45, 15*7 = 105, 45*7 = 315, 105*11 = 1155, 315*107 = 33705, 1155*389 = 449295, 26325*389 = 10240425, ...
Is 9 the largest term not divisible by 15? Only 7 of the 26 terms listed after 45 are not multiples of 7: is this subsequence finite? (End)

Crossrefs

Cf. A171929 (odd numbers whose abundancy is closer to 2 than any smaller odd number).

Programs

  • Mathematica
    k = 1; minDiff = 1; Join[{k}, Table[k = k + 2; While[abun = DivisorSigma[1, k]/k; 2 - abun > minDiff || abun => 2, k = k + 2]; minDiff = 2 - abun; k, {10}]]

Extensions

a(22)-a(28) from Donovan Johnson, Apr 08 2011