A077374
Odd numbers m whose abundance by absolute value is at most 10, that is, -10 <= sigma(m) - 2m <= 10.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 15, 21, 315, 1155, 8925, 32445, 442365, 815634435
Offset: 1
sigma(32445) = 64896 and 32445*2 = 64890, which makes the odd number 32445 six away from perfection: A(32445) = 6 and hence in this sequence.
- Eric Weisstein's World of Mathematics, Abundance.
-
Select[Range[1, 10^6, 2], -10 <= DivisorSigma[1, #] - 2 # <= 10 &] (* Michael De Vlieger, Feb 22 2017 *)
-
forstep(n=1,442365,2,if(abs(sigma(n)-2*n)<=10,print1(n,",")))
A088012
Odd solutions to abs(sigma(k) - 2k) <= log(k). Numbers k whose abundance-radius does not exceed log(k).
Original entry on oeis.org
1155, 8925, 32445, 442365, 159030135, 815634435, 2586415095, 1956860570050575, 221753180448460815, 747406020889133775
Offset: 1
1155 is in the sequence because sigma(1155) = 2304, giving 2*1155 - 2304 = 6, while natural log of 1155 is about 7.05.
From _M. F. Hasler_, Jul 18 2016: (Start)
We have the following factorizations:
1155 = 3 * 5 * 7 * 11,
8925 = 3 * 5^2 * 7 * 17,
32445 = 3^2 * 5 * 7 * 103,
442365 = 3 * 5 * 7 * 11 * 383,
159030135 = 3^5 * 5 * 11 * 73 * 163,
815634435 = 3 * 5 * 7 * 11 * 547 * 1291,
2586415095 = 3^2 * 5 * 11 * 31 * 41 * 4111.
The sequence appears to be a subsequence of A171929. (End)
-
abu[x_] := Abs[DivisorSigma[1, x]-2*x] Do[If[ !Greater[abu[n], Log[n]//N]&&OddQ[n], Print[n]], {n, 1, 100000}]
-
is(n)=n%2 && abs(sigma(n)-2*n)<=log(n) \\ Charles R Greathouse IV, Feb 21 2017
A171929
Odd numbers whose abundancy is closer to 2 than any smaller odd number.
Original entry on oeis.org
1, 3, 9, 15, 45, 105, 315, 1155, 7425, 8415, 8925, 31815, 32445, 351351, 442365, 13800465, 14571585, 16286445, 20355825, 20487159, 78524145, 132701205, 159030135, 815634435, 2586415095, 29169504045, 40833636525, 125208115065
Offset: 1
Example: a(8) = 1155 since sigma(1155)/1155 = 1.9948 which is closer to 2 than any smaller a(n).
-
minDiff=Infinity; k=-1; Table[k=k+2; While[abun=DivisorSigma[1,k]/k; Abs[2-abun] > minDiff, k=k+2]; minDiff=Abs[2-abun]; k, {15}] (* T. D. Noe, Jan 28 2010 *)
-
m=2; forstep(n=1,10^10,2, t=abs(sigma(n)/n - 2); if(tMax Alekseyev, Jan 26 2010
A188263
Odd abundant numbers whose abundancy is closer to 2 than any smaller odd abundant number.
Original entry on oeis.org
945, 2205, 7425, 8415, 8925, 31815, 32445, 351351, 442365, 14571585, 20355825, 20487159, 78524145, 159030135, 1756753845, 2586415095, 82014476355, 93128205975, 125208115065, 127595519865, 154063853475, 394247024535, 948907364895
Offset: 1
Cf.
A171929 (odd numbers whose abundancy is closer to 2 than any smaller odd number)
-
k = 1; minDiff = 1; Table[k = k + 2; While[abun = DivisorSigma[1, k]/k; abun - 2 > minDiff || abun < 2, k = k + 2]; minDiff = abun - 2; k, {10}]
A228450
Deficient numbers with increasing abundancy without being powers of 2.
Original entry on oeis.org
3, 9, 10, 44, 110, 136, 592, 884, 2144, 8384, 18632, 32896, 116624, 391612, 527872, 1090912, 2102272, 8394752, 15370304, 73995392, 536920064, 815634435, 2147516416, 34360131584, 217898810368, 546409576448, 549759483904
Offset: 1
First term is 3 with sigma(n)/n = 4/3 ~ 1.33, then 4 with 13/9 ~ 1.44, then 10 with 9/5 = 1.80.
-
abun[n_] := DivisorSigma[1, n]/n; mx = 0; t = {}; Do[m = abun[n]; If[m < 2 && m > mx && ! IntegerQ[Log[2, n]], mx = m; AppendTo[t, n]], {n, 10000}]; t (* T. D. Noe, Apr 09 2014 *)
-
lista(nn) = {rab = 0; for (n=1, nn, if (n != 2^valuation(n, 2), ab = sigma(n)/n; if ((ab < 2) && (ab > rab), print1(n, ", "); rab = ab;);););} \\ Michel Marcus, Oct 27 2013
A326138
Numbers k such that A005187(k) < sigma(k) <= 2k, where A005187(k) = 2k - {binary weight of k}.
Original entry on oeis.org
6, 28, 110, 496, 884, 8128, 18632, 85936, 116624, 391612, 15370304, 17619844, 33550336, 73995392, 815634435, 3915380170, 5556840416, 6800695312, 8589869056, 42783299288, 80999455688, 137438691328, 217898810368, 546409576448, 1081071376208, 1661355408388
Offset: 1
815634435 = 3*5*7*11*547*1291 is included as in base-2 (A007088) it is written as 110000100111011001100000000011_2, thus A000120(815634435) = 12, while its nonnegative deficiency (A033879) is 2*815634435 - sigma(815634435) = 6 < 12.
Showing 1-6 of 6 results.
Comments