A077374
Odd numbers m whose abundance by absolute value is at most 10, that is, -10 <= sigma(m) - 2m <= 10.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 15, 21, 315, 1155, 8925, 32445, 442365, 815634435
Offset: 1
sigma(32445) = 64896 and 32445*2 = 64890, which makes the odd number 32445 six away from perfection: A(32445) = 6 and hence in this sequence.
- Eric Weisstein's World of Mathematics, Abundance.
-
Select[Range[1, 10^6, 2], -10 <= DivisorSigma[1, #] - 2 # <= 10 &] (* Michael De Vlieger, Feb 22 2017 *)
-
forstep(n=1,442365,2,if(abs(sigma(n)-2*n)<=10,print1(n,",")))
A088012
Odd solutions to abs(sigma(k) - 2k) <= log(k). Numbers k whose abundance-radius does not exceed log(k).
Original entry on oeis.org
1155, 8925, 32445, 442365, 159030135, 815634435, 2586415095, 1956860570050575, 221753180448460815, 747406020889133775
Offset: 1
1155 is in the sequence because sigma(1155) = 2304, giving 2*1155 - 2304 = 6, while natural log of 1155 is about 7.05.
From _M. F. Hasler_, Jul 18 2016: (Start)
We have the following factorizations:
1155 = 3 * 5 * 7 * 11,
8925 = 3 * 5^2 * 7 * 17,
32445 = 3^2 * 5 * 7 * 103,
442365 = 3 * 5 * 7 * 11 * 383,
159030135 = 3^5 * 5 * 11 * 73 * 163,
815634435 = 3 * 5 * 7 * 11 * 547 * 1291,
2586415095 = 3^2 * 5 * 11 * 31 * 41 * 4111.
The sequence appears to be a subsequence of A171929. (End)
-
abu[x_] := Abs[DivisorSigma[1, x]-2*x] Do[If[ !Greater[abu[n], Log[n]//N]&&OddQ[n], Print[n]], {n, 1, 100000}]
-
is(n)=n%2 && abs(sigma(n)-2*n)<=log(n) \\ Charles R Greathouse IV, Feb 21 2017
A171929
Odd numbers whose abundancy is closer to 2 than any smaller odd number.
Original entry on oeis.org
1, 3, 9, 15, 45, 105, 315, 1155, 7425, 8415, 8925, 31815, 32445, 351351, 442365, 13800465, 14571585, 16286445, 20355825, 20487159, 78524145, 132701205, 159030135, 815634435, 2586415095, 29169504045, 40833636525, 125208115065
Offset: 1
Example: a(8) = 1155 since sigma(1155)/1155 = 1.9948 which is closer to 2 than any smaller a(n).
-
minDiff=Infinity; k=-1; Table[k=k+2; While[abun=DivisorSigma[1,k]/k; Abs[2-abun] > minDiff, k=k+2]; minDiff=Abs[2-abun]; k, {15}] (* T. D. Noe, Jan 28 2010 *)
-
m=2; forstep(n=1,10^10,2, t=abs(sigma(n)/n - 2); if(tMax Alekseyev, Jan 26 2010
A188597
Odd deficient numbers whose abundancy is closer to 2 than any smaller odd deficient number.
Original entry on oeis.org
1, 3, 9, 15, 45, 105, 315, 1155, 26325, 33705, 449295, 1805475, 10240425, 13800465, 16029405, 16286445, 21003885, 32062485, 132701205, 594397485, 815634435, 29169504045, 40833636525, 295612416135, 636988686495, 660733931655, 724387847085, 740099543085, 1707894294975, 4439852974095, 7454198513685
Offset: 1
Cf.
A171929 (odd numbers whose abundancy is closer to 2 than any smaller odd number).
-
k = 1; minDiff = 1; Join[{k}, Table[k = k + 2; While[abun = DivisorSigma[1, k]/k; 2 - abun > minDiff || abun => 2, k = k + 2]; minDiff = 2 - abun; k, {10}]]
A335052
Odd unitary abundant numbers whose unitary abundancy is closer to 2 than that of any smaller odd unitary abundant number.
Original entry on oeis.org
15015, 19635, 21945, 23205, 25935, 31395, 33915, 39585, 41055, 45885, 51765, 80535, 83265, 354585, 359205, 361515, 366135, 382305, 389235, 400785, 403095, 407715, 414645, 416955, 423885, 430815, 437745, 442365, 77967015, 132335385, 617102535, 724239285, 1756753845
Offset: 1
The unitary abundancies of the first terms are 2.148..., 2.112..., 2.099..., 2.085..., 2.072..., ...
-
usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); seq = {}; r = 3; Do[s = usigma[n]/n; If[s > 2 && s < r, AppendTo[seq, n]; r = s], {n, 1, 10^6, 2}]; seq
A335053
Odd bi-unitary abundant numbers whose bi-unitary abundancy is closer to 2 than that of any smaller odd bi-unitary abundant number.
Original entry on oeis.org
945, 25515, 46035, 49875, 83265, 354585, 359205, 361515, 366135, 382305, 389235, 396165, 400785, 403095, 407715, 414645, 416955, 423885, 430815, 437745, 442365, 13351635, 132335385, 159030135, 1756753845, 6561644355, 10394173335, 13455037365, 37456183215
Offset: 1
The bi-unitary abundancies of the first terms are 2.031..., 2.005..., 2.0019..., 2.0018..., 2.0015..., ...
-
fun[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), (p^(e + 1) - 1)/(p - 1) - p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); seq = {}; r = 3; Do[s = bsigma[n]/n; If[s > 2 && s < r, AppendTo[seq, n]; r = s], {n, 1, 10^6, 2}]; seq
A335055
Odd infinitary abundant numbers whose infinitary abundancy is closer to 2 than that of any smaller odd infinitary abundant number.
Original entry on oeis.org
945, 29835, 33345, 43065, 46035, 49875, 83265, 354585, 359205, 361515, 366135, 382305, 389235, 400785, 403095, 407715, 414645, 416955, 423885, 430815, 437745, 442365, 77967015, 132335385, 210124665, 719709375, 724239285, 1756753845, 9665740455, 10394173335
Offset: 1
The infinitary abundancies of the first terms are 2.031..., 2.027..., 2.015..., 2.006..., 2.001..., ...
-
fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; seq = {}; r = 3; Do[s = isigma[n]/n; If[s > 2 && s < r, AppendTo[seq, n]; r = s], {n, 1, 10^5, 2}]; seq
A336254
Exponential barely abundant numbers: exponential abundant numbers whose exponential abundancy is closer to 2 than that of any smaller exponential abundant number.
Original entry on oeis.org
900, 1764, 3600, 4356, 4500, 4900, 12348, 47916, 79092, 112500, 605052, 2812500, 13366548, 29647548, 89139564, 231708348, 701538156, 1757812500, 14772192228, 32179382604, 43945312500, 71183762748, 620995547124, 990454107996, 3417547576788, 3488004374652, 10271220141996
Offset: 1
The first 6 exponential abundant numbers, 900, 1764, 3600, 4356, 4500 and 4900, have decreasing values of exponential abundancy: 2.4, 2.285..., 2.2, 2.181..., 2.08, 2.057... and therefore they are in this sequence. The next exponential abundant number with a lower exponential abundancy is 12348 with eisgma(12348)/12348 = 2.040...
The exponential version of
A071927.
-
fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; rm = 3; s={}; Do[r = esigma[n]/n; If[r <= 2, Continue[]]; If[r < rm, rm = r; AppendTo[s, n]], {n, 1, 10^6}]; s
A336679
Odd exponential abundant numbers whose exponential abundancy is closer to 2 than that of any smaller odd exponential abundant number.
Original entry on oeis.org
225450225, 385533225, 481583025, 538472025, 672624225, 985646025, 1150227225, 1566972225, 1685513025, 2105433225, 2679615225, 6485886225, 6554064825, 6933060225, 9150077475, 179678493225, 185601564225, 191620685025, 195686793225
Offset: 1
The exponential version of
A188263.
-
esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; seq = {}; rm = 3; Do[r = esigma[n]/n; If[r > 2 && r < rm, rm = r; AppendTo[seq, n]], {n, 1, 10^9, 2}]; seq
Showing 1-9 of 9 results.
Comments