A077374
Odd numbers m whose abundance by absolute value is at most 10, that is, -10 <= sigma(m) - 2m <= 10.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 15, 21, 315, 1155, 8925, 32445, 442365, 815634435
Offset: 1
sigma(32445) = 64896 and 32445*2 = 64890, which makes the odd number 32445 six away from perfection: A(32445) = 6 and hence in this sequence.
- Eric Weisstein's World of Mathematics, Abundance.
-
Select[Range[1, 10^6, 2], -10 <= DivisorSigma[1, #] - 2 # <= 10 &] (* Michael De Vlieger, Feb 22 2017 *)
-
forstep(n=1,442365,2,if(abs(sigma(n)-2*n)<=10,print1(n,",")))
A088012
Odd solutions to abs(sigma(k) - 2k) <= log(k). Numbers k whose abundance-radius does not exceed log(k).
Original entry on oeis.org
1155, 8925, 32445, 442365, 159030135, 815634435, 2586415095, 1956860570050575, 221753180448460815, 747406020889133775
Offset: 1
1155 is in the sequence because sigma(1155) = 2304, giving 2*1155 - 2304 = 6, while natural log of 1155 is about 7.05.
From _M. F. Hasler_, Jul 18 2016: (Start)
We have the following factorizations:
1155 = 3 * 5 * 7 * 11,
8925 = 3 * 5^2 * 7 * 17,
32445 = 3^2 * 5 * 7 * 103,
442365 = 3 * 5 * 7 * 11 * 383,
159030135 = 3^5 * 5 * 11 * 73 * 163,
815634435 = 3 * 5 * 7 * 11 * 547 * 1291,
2586415095 = 3^2 * 5 * 11 * 31 * 41 * 4111.
The sequence appears to be a subsequence of A171929. (End)
-
abu[x_] := Abs[DivisorSigma[1, x]-2*x] Do[If[ !Greater[abu[n], Log[n]//N]&&OddQ[n], Print[n]], {n, 1, 100000}]
-
is(n)=n%2 && abs(sigma(n)-2*n)<=log(n) \\ Charles R Greathouse IV, Feb 21 2017
A228059
Odd numbers of the form p^(1+4k) * r^2, where p is prime of the form 1+4m, r > 1, and gcd(p,r) = 1 that are closer to being perfect than previous terms.
Original entry on oeis.org
45, 405, 2205, 26325, 236925, 1380825, 1660725, 35698725, 3138290325, 29891138805, 73846750725, 194401220013, 194509436121, 194581580193, 194689796301, 194798012409, 194906228517, 194942300553, 195230876841, 195339092949, 195447309057, 195699813309
Offset: 1
45 = 5 * 3^2.
405 = 5 * 3^4.
2205 = 5 * (3 * 7)^2.
26325 = 13 * (3^2 * 5)^2.
236925 = 13 * (3^3 * 5)^2.
1380825 = 17 * (3 * 5 * 19)^2.
1660725 = 61 * (3 * 5 * 11)^2.
35698725 = 61 * (3^2 * 5 * 17)^2.
3138290325 = 53 * (3^4 * 5 * 19)^2.
29891138805 = 5 * (3^2 * 11^2 * 71)^2.
73846750725 = 509 * (3 * 5 * 11 * 73)^2.
- Giovanni Resta, Table of n, a(n) for n = 1..37
- Jose Arnaldo B. Dris, The abundancy index of divisors of odd perfect numbers, J. Integer Sequences, 15 (2012), Article 12.4.4.
- Jose Arnaldo B. Dris, A short "proof" for Sorli's conjecture on odd perfect numbers, arxiv 1308.2156 [math.NT], 2013-2015.
- Jose Arnaldo B. Dris, Euclid-Euler Heuristics for (Odd) Perfect Numbers, arXiv preprint arXiv:1310.5616 [math.NT], 2013-2017.
- Jose Arnaldo B. Dris, A Sufficient Condition for Disproving Descartes's Conjecture on Odd Perfect Numbers, arXiv preprint arXiv:1311.6803 [math.NT], 2013-2015.
- Jose Arnaldo Bebita Dris, Doli-Jane Uvales Tejada, A note on the OEIS sequence A228059, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 1, 199-205.
- Index entries for sequences where any odd perfect numbers must occur
-
nn = 7; f[n_] := Abs[DivisorSigma[1, n]/n - 2]; n = 45; t = {n}; lastF = f[n]; cnt = 1; While[cnt < nn, n = n + 2; {p, e} = Transpose[FactorInteger[n]]; od = Select[e, OddQ]; If[Length[e] > 1 && Length[od] == 1 && Mod[od[[1]], 4] == 1 && Mod[p[[Position[e, od[[1]]][[1, 1]]]], 4] == 1 && f[n] < lastF, cnt++; lastF = f[n]; Print[{n, lastF}]; AppendTo[t, n]]]; t
-
isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
m=-1; n=0; while(m!=0, n++; if(isA228058(n), if((m<0) || abs((sigma(n)/n)-2)Antti Karttunen, Apr 22 2019
A188263
Odd abundant numbers whose abundancy is closer to 2 than any smaller odd abundant number.
Original entry on oeis.org
945, 2205, 7425, 8415, 8925, 31815, 32445, 351351, 442365, 14571585, 20355825, 20487159, 78524145, 159030135, 1756753845, 2586415095, 82014476355, 93128205975, 125208115065, 127595519865, 154063853475, 394247024535, 948907364895
Offset: 1
Cf.
A171929 (odd numbers whose abundancy is closer to 2 than any smaller odd number)
-
k = 1; minDiff = 1; Table[k = k + 2; While[abun = DivisorSigma[1, k]/k; abun - 2 > minDiff || abun < 2, k = k + 2]; minDiff = abun - 2; k, {10}]
A188597
Odd deficient numbers whose abundancy is closer to 2 than any smaller odd deficient number.
Original entry on oeis.org
1, 3, 9, 15, 45, 105, 315, 1155, 26325, 33705, 449295, 1805475, 10240425, 13800465, 16029405, 16286445, 21003885, 32062485, 132701205, 594397485, 815634435, 29169504045, 40833636525, 295612416135, 636988686495, 660733931655, 724387847085, 740099543085, 1707894294975, 4439852974095, 7454198513685
Offset: 1
Cf.
A171929 (odd numbers whose abundancy is closer to 2 than any smaller odd number).
-
k = 1; minDiff = 1; Join[{k}, Table[k = k + 2; While[abun = DivisorSigma[1, k]/k; 2 - abun > minDiff || abun => 2, k = k + 2]; minDiff = 2 - abun; k, {10}]]
A119239
Oddly superabundant numbers: odd n with sigma(n)/n > sigma(k)/k for all odd k < n.
Original entry on oeis.org
1, 3, 9, 15, 45, 105, 315, 945, 1575, 2835, 3465, 10395, 17325, 31185, 45045, 135135, 225225, 405405, 675675, 2027025, 2297295, 3828825, 6891885, 11486475, 34459425, 43648605, 72747675, 130945815, 218243025, 654729075, 1003917915, 1527701175
Offset: 1
-
rec=0; lst={}; Do[abun=DivisorSigma[1,n]/n; If[abun>rec, rec=abun; AppendTo[lst,n]], {n,1,10^6,2}]; lst
-
r=0;forstep(n=1,1e6,2,t=sigma(n)/n;if(t>r,r=t;print1(n", "))) \\ Charles R Greathouse IV, Nov 27 2013
A228450
Deficient numbers with increasing abundancy without being powers of 2.
Original entry on oeis.org
3, 9, 10, 44, 110, 136, 592, 884, 2144, 8384, 18632, 32896, 116624, 391612, 527872, 1090912, 2102272, 8394752, 15370304, 73995392, 536920064, 815634435, 2147516416, 34360131584, 217898810368, 546409576448, 549759483904
Offset: 1
First term is 3 with sigma(n)/n = 4/3 ~ 1.33, then 4 with 13/9 ~ 1.44, then 10 with 9/5 = 1.80.
-
abun[n_] := DivisorSigma[1, n]/n; mx = 0; t = {}; Do[m = abun[n]; If[m < 2 && m > mx && ! IntegerQ[Log[2, n]], mx = m; AppendTo[t, n]], {n, 10000}]; t (* T. D. Noe, Apr 09 2014 *)
-
lista(nn) = {rab = 0; for (n=1, nn, if (n != 2^valuation(n, 2), ab = sigma(n)/n; if ((ab < 2) && (ab > rab), print1(n, ", "); rab = ab;);););} \\ Michel Marcus, Oct 27 2013
A386422
Odd numbers k that are closer to being perfect than previous terms and also satisfy the condition that A324644(k)/A324198(k) = 2.
Original entry on oeis.org
3, 33, 99, 135, 855, 2295, 19575, 38745, 63855, 121485, 371925, 3870195, 8109585, 28306005, 36340395, 113215095, 463084245, 672363615, 675916395, 686574735, 1208140395
Offset: 1
Apart from initial 3, a subsequence of
A364286.
-
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
is_A364286(n) = if(isprime(n), 0, my(u=A276086(n)); (gcd(sigma(n),u)==2*gcd(n,u))); \\ Antti Karttunen, Jul 21 2025
m=-1; n=-1; k=0; while(m!=0, n+=2; if(!((n-1)%(2^25)),print1("("n")")); if(isprime(n) || is_A364286(n), if((m<0) || abs((sigma(n)/n)-2)
A386419
Odd numbers k that are closer to being perfect than previous terms, and also satisfy the condition that phi(k) = phi(sigma(k)).
Original entry on oeis.org
1, 3, 15, 45, 585, 2295, 11475, 29835, 72675, 424575, 7977165, 28851975, 29277885, 39317175
Offset: 1
-
A353680(n) = ((n%2) && (eulerphi(sigma(n))==eulerphi(n)));
isA353679(n) = A353680(n);
m=-1; n=0; k=0; while(m!=0, n++; if(!(n%(2^25)),print1("("n")")); if(isA353679(n), if((m<0) || abs((sigma(n)/n)-2)
A386420
Odd numbers k that are closer to being perfect than previous terms and also satisfy the conditions that sigma(k) preserves the 3-adic valuation of k, and that sigma(k) == -k (mod 3).
Original entry on oeis.org
7, 15, 105, 495, 1365, 2205, 9405, 26145, 31815, 497835, 654675, 1984455, 7188885, 9018009, 9338595, 9958905, 13777785, 13800465, 14571585, 47020995, 78867495, 132884115, 210124665, 363860775
Offset: 1
-
isA349752(n) = if(!(n%2), 0, my(s=sigma(n)); (0==(s+n)%3) && valuation(s, 3)==valuation(n, 3));
m=-1; n=0; k=0; while(m!=0, n++; if(!(n%(2^25)),print1("("n")")); if(isA349752(n), if((m<0) || abs((sigma(n)/n)-2)
Showing 1-10 of 12 results.
Comments