cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jose Arnaldo Bebita Dris

Jose Arnaldo Bebita Dris's wiki page.

Jose Arnaldo Bebita Dris has authored 2 sequences.

A322154 Numbers k satisfying gcd(k^2, sigma(k^2)) > sigma(k), where sigma is the sum-of-divisors function.

Original entry on oeis.org

693, 1386, 1463, 1881, 2379, 2926, 4389, 4758, 8778, 9516, 11895, 13167, 16653, 18018, 19032, 23790, 24180, 25641, 26169, 26334, 33306, 37271, 40443, 43890, 45201, 52668, 54717, 57057, 61380, 65835, 73150, 78507, 105336, 109725, 111813, 114114, 131670, 157014, 166530, 169959
Offset: 1

Author

Keywords

Comments

Let N = q^k*n^2 be an odd perfect number with special prime q. If k = 1, it follows that sigma(q^k) < n. Since 2n^2/sigma(q^k) = gcd(n^2, sigma(n^2)), if k = 1 then we have gcd(n^2, sigma(n^2)) > 2n > sigma(n) (since n is deficient, because q^k n^2 is perfect). [See (Dris, 2017)]

Examples

			a(1) = 693 is in the sequence because gcd((693)^2, sigma((693)^2)) = gcd(480249, sigma(480249)) > sigma(693), where sigma(480249) = 917301 = 3*7*11^2*19^2, and 480249 = 3^4*7^2*11^2, therefore gcd(480249, sigma(480249)) = 3*7*11^2 = 2541 but sigma(693) = 1248.
		

Crossrefs

Cf. A000203 (sigma), A065764.

Programs

  • GAP
    Filtered([1..170000],n->Gcd(n^2,Sigma(n^2))>Sigma(n)); # Muniru A Asiru, Dec 06 2018
    
  • Maple
    with(numtheory): select(n->gcd(n^2,sigma(n^2))>sigma(n),[$1..170000]); # Muniru A Asiru, Dec 06 2018
  • Mathematica
    Select[Range[10^6], GCD[#^2, DivisorSigma[1, #^2]] > DivisorSigma[1, #] &]
  • PARI
    isok(n) = gcd(n^2,sigma(n^2)) > sigma(n); \\ Michel Marcus, Nov 29 2018
    
  • Python
    from sympy import divisor_sigma, gcd
    for n in range(1,170000):
        if gcd(n**2,divisor_sigma(n**2))>divisor_sigma(n):
            print(n) # Stefano Spezia, Dec 07 2018

Formula

If N = q^k*n^2 is an odd perfect number with special prime q, then it is easy to show that sigma(n^2)/q^k = 2n^2/sigma(q^k) = gcd(n^2,sigma(n^2)). From the last equation, it is easy to prove that D(n^2)/s(q^k) = 2s(n^2)/D(q^k) = gcd(n^2,sigma(n^2)), where D(x)=2x-sigma(x) is the deficiency of x and s(x)=sigma(x)-x is the sum of the aliquot divisors of x.
Note that, if k = 1, then sigma(q^k) < n, from which it would follow that q^k < n. [See (Dris, 2017).] Therefore, if k = 1, we have that N = q^k n^2 < n^3. Using Ochem and Rao's lower bound for an odd perfect number, we get n^3 > N > 10^1500, from which we obtain n > 10^500. [See (Ochem and Rao, 2012).]
Thus, if k = 1, we have the lower bound sigma(n^2)/q^k = 2n^2/sigma(q^k) = gcd(n^2, sigma(n^2)) > 2n > n > 10^500 which significantly improves on the corresponding result in (Chen and Chen, 2014).
The assertion k = 1 is known as the Descartes-Frenicle-Sorli Conjecture on odd perfect numbers.

Extensions

More terms from Michel Marcus, Nov 29 2018

A293391 Integers n such that sigma(n)/phi(n) is a perfect square.

Original entry on oeis.org

1, 14, 30, 105, 248, 264, 418, 714, 1485, 3080, 3135, 3596, 3828, 3956, 4064, 5396, 6678, 8636, 10098, 12648, 20026, 20790, 21318, 22152, 23374, 24882, 25714, 26040, 35074, 35343, 39105, 41656, 43890, 44660, 49938, 55154, 56134, 56536, 61344, 71145, 74613, 86304, 87087, 94944
Offset: 1

Author

Keywords

Comments

From Robert Israel, Dec 12 2017: (Start)
Intersection of A011257 and A020492.
If x and y are coprime members of the sequence, then x*y is in the sequence.
Contains all members of A133028 except 3. (End)

Examples

			sigma(14)=3*8=24, phi(14)=14*(1/2)*(6/7)=6, sigma(14)/phi(14)=2^2, so 14 is in the list.
		

Programs

  • Maple
    for n from 1 to 100000 do
        r := numtheory[sigma](n)/numtheory[phi](n) ;
        if issqr(r) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Dec 07 2017
  • Mathematica
    Select[Range[10^5], IntegerQ@ Sqrt[DivisorSigma[1, #]/EulerPhi[#]] &] (* Michael De Vlieger, Dec 08 2017 *)
  • PARI
    isok(n) = my(q=sigma(n)/eulerphi(n)); issquare(q) && (denominator(q) == 1); \\ Michel Marcus, Dec 07 2017; corrected Sep 21 2019

Formula

a(n) = sigma(n)/phi(n) = m^2, for some integer m.