cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A011257 Numbers k such that the geometric mean of phi(k) and sigma(k) is an integer.

Original entry on oeis.org

1, 14, 30, 51, 105, 170, 194, 248, 264, 364, 405, 418, 477, 595, 679, 714, 760, 780, 1023, 1455, 1463, 1485, 1496, 1512, 1524, 1674, 1715, 1731, 1796, 1804, 2058, 2080, 2651, 2754, 2945, 3080, 3135, 3192, 3410, 3534, 3567, 3596, 3828, 3956, 4064, 4381, 4420
Offset: 1

Views

Author

Keywords

Comments

For these terms the arithmetic mean is also an integer. It is conjectured that sigma(k) for these numbers is never odd. See also A065146, A028982, A028983. - Labos Elemer, Oct 18 2001
If p > 2 and 2^p - 1 is prime (a Mersenne prime) then m = 2^(p-2)*(2^p-1) is in the sequence because phi(m) = 2^(p-2)*(2^(p-1)-1); sigma(m) = (2^(p-1)-1)*2^p hence sqrt(phi(m)*sigma(m)) = 2^(p-1)*(2^(p-1)-1) is an integer. So for j > 1, 2^(A000043(j)-2)*2^(A000043(j)-1) is in the sequence. - Farideh Firoozbakht, Nov 27 2005
From a(2633) = 6931232 on, it is no longer true (as was once conjectured) that a(n) > n^2. - M. F. Hasler, Feb 07 2009
It follows from Theorems 1 and 2 in Broughan-Ford-Luca that a(n) << n^(24+e) for all e > 0. - Charles R Greathouse IV, May 09 2013

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 51, p. 19, Ellipses, Paris 2008.
  • Zhang Ming-Zhi (typescript submitted to Unsolved Problems section of Monthly, 96-01-10).

Crossrefs

Cf. A293391 (sigma(m)/phi(m) is a perfect square), A327624 (this sequence \ A293391).

Programs

  • Magma
    [k:k in [1..4500]| IsPower(EulerPhi(k)*DivisorSigma(1,k),2)]; // Marius A. Burtea, Sep 19 2019
  • Mathematica
    Select[Range[8000], IntegerQ[Sqrt[DivisorSigma[1, #] EulerPhi[#]]] &] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    is(n)=issquare(eulerphi(n)*sigma(n)) \\ Charles R Greathouse IV, May 09 2013
    

A292422 Numbers of the form x = 2^k*p*q, p,q odd primes, such that sigma(x)/phi(x) = 4.

Original entry on oeis.org

418, 3596, 3956, 5396, 8636, 41656, 56536, 393104, 2072608, 2316448, 6543008, 17434528, 135394432, 217023616, 1264918784, 1490909824, 2710540544, 11444858368, 17669583104, 34797058304, 37698861568, 70572901376, 132968907776, 226965472256, 233356030976, 552070776832, 596357220352, 601188468736
Offset: 1

Views

Author

Jud McCranie, Sep 16 2017

Keywords

Comments

A subset of A068390 and A020492 (balanced numbers). Conjectured to be infinite by Broughan and Zhou.
From David A. Corneth, Sep 21 2019: (Start)
Exactly 130 terms are of the form 2^35 * p * q.
We have phi and sigma are multiplicative and sigma(2^k) / phi(2^k) = 4 - 2/2^k, and sigma(p)/phi(p) = 1 + 2 / (p-1).
So we need (4 - 2/2^k) * (1 + 2 / (p-1)) <= 4 which gives a lower bound on p depending on k; p > nextprime(4*2^k).
We can then, given k and p, solve for q. Without loss of generality, p < q. Then search over the primes and stop for that value of k when p > q.
This method may be refined using insights from the article and/or given some k, solve the system (1 + 2 / (p-1)) * (1 + 2 / (q - 1)) = (a*m) / (b*m) for p and q where a/b is in lowest terms, m > 0. (End)
Furthermore, p < 8*2^k - 2. - David A. Corneth, Sep 26 2019

Examples

			418 = 2*11*19; sigma(418) = 720 = 4*phi(418).
		

Crossrefs

Subsequence of A293391 (sigma(x)/phi(x) square).

Programs

  • PARI
    is(n) = my(f = factor(n)); #f~ == 3 && f[2, 2] == 1 && f[3, 2] == 1 && f[1,1] == 2 && sigma(f) / eulerphi(f) == 4 \\ David A. Corneth, Sep 21 2019

A327624 Numbers m such that sigma(m)*phi(m) is a square but sigma(m)/phi(m) is not an integer.

Original entry on oeis.org

51, 170, 194, 364, 405, 477, 595, 679, 760, 780, 1023, 1455, 1463, 1496, 1512, 1524, 1674, 1715, 1731, 1796, 1804, 2058, 2080, 2651, 2754, 2945, 3192, 3410, 3534, 3567, 4381, 4420, 5044, 5130, 5670, 5770, 5784, 5797, 5822, 5859, 7600, 8245
Offset: 1

Views

Author

Bernard Schott, Sep 19 2019

Keywords

Comments

If sigma(m)/phi(m) is a square (m is in A293391) then sigma(m)*phi(m) is also a square (m is in A011257), but the converse is false (see 51 in the Example section). This sequence consists of these counterexamples.

Examples

			phi(51) = 32 and sigma(51) = 72, phi(51) * sigma(51) = 32 * 72 = 2304 = 48^2, but sigma(51)/phi(51) = 72/32 = 9/4 is not an integer.
		

Crossrefs

Equals A293391 \ A011257.
Cf. A020492 (sigma(m)/phi(m) is an integer).
Cf. A000010 (phi), A000203 (sigma).

Programs

  • Magma
    [k:k in [1..9000]| not IsIntegral(SumOfDivisors(k)/EulerPhi(k)) and IsSquare(EulerPhi(k)*SumOfDivisors(k)) ]; // Marius A. Burtea, Sep 19 2019
    
  • Maple
    filter:= v -> sigma(v)/phi(v) <> floor(sigma(v)/phi(v)) and issqr(sigma(v)*phi(v)) : select(filter, [$1..50000]);
  • Mathematica
    sQ[n_] := IntegerQ @ Sqrt[n]; aQ[n_] := sQ[(p = EulerPhi[n]) * (s = DivisorSigma[1, n])] && !sQ[s/p]; Select[Range[10^4], aQ] (* Amiram Eldar, Sep 19 2019 *)
  • PARI
    isok(m) = my(s=sigma(m), e=eulerphi(m)); issquare(s*e) && (s%e); \\ Michel Marcus, Sep 21 2019

A341939 Numbers m such that phi(m)/tau(m) is a square of an integer where phi is the Euler totient function (A000010) and tau is the number of divisors function (A000005).

Original entry on oeis.org

1, 3, 8, 10, 18, 19, 24, 30, 34, 45, 52, 57, 73, 74, 85, 102, 125, 135, 140, 152, 153, 156, 163, 182, 185, 190, 202, 219, 222, 252, 255, 333, 342, 360, 375, 394, 416, 420, 436, 451, 455, 456, 459, 476, 489, 505, 514, 546, 555, 570, 584, 606, 625, 629, 640, 646, 679, 680, 730
Offset: 1

Views

Author

Bernard Schott, Feb 24 2021

Keywords

Comments

The first 11 terms of this sequence are also the first 11 terms of A341938: m such that phi(m)*tau(m) is a square, then, a(12) = 57 while A341938(12) = 54. Indeed, if phi(m)/tau(m) is a perfect square then phi(m)*tau(m) is also a square, but the converse is false. These counterexamples are in A341940, the first one is 54 (last example).
Some subsequences (see examples):
-> The seven terms that satisfy also tau(m) = phi(m) form the subsequence A020488 with phi(m)/tau(m) = 1^2.
-> Primes p of the form 2*k^2 + 1 (A090698) form another subsequence because tau(p) = 2 and phi(p) = p-1 = 2*k^2, so phi(p)/tau(p) = k^2.
-> Cubes p^3 where p is a prime of the form k^2+1 (A002496) form another subset because if p = 2, phi(8)/tau(8)=1, and if p odd, phi(p^3)/tau(p^3) = (k*p/2)^2 with k even.

Examples

			phi(30) = 8, tau(30) = 8 so phi(30)/tau(30) = 1^2, and 30 is a term.
phi(45) = 24, tau(45) = 6, so phi(45)/tau(45) = 4 = 2^2, and 85 is a term.
phi(125) = 100, tau(125) = 4, so phi(125)/tau(125) = 25 = 5^2, and 125 is a term.
phi(54) = 18, tau(54) = 8, and phi(54)/tau(54) = 18/8 = 9/4 = (3/2)^2 and 54 is not a term while phi(54)*tau(54) = 12^2.
		

Crossrefs

Intersection of A020491 and A341938.
Similar for: A144695 (sigma(n)/tau(n) perfect square), A293391 (sigma(n)/phi(n) perfect square).
Subsequences: A090698, A020488.
Cf. A000005 (phi), A000010(tau).

Programs

  • Maple
    with(numtheory): filter:= q -> phi(q)/tau(q) = floor(phi(q)/tau(q)) and issqr(phi(q)/tau(q)) : select(filter, [$1..750]);
  • Mathematica
    Select[Range[1000], IntegerQ @ Sqrt[EulerPhi[#]/DivisorSigma[0, #]] &] (* Amiram Eldar, Feb 24 2021 *)
  • PARI
    isok(m) = my(x=eulerphi(m)/numdiv(m)); (denominator(x)==1) && issquare(x); \\ Michel Marcus, Feb 24 2021
Showing 1-4 of 4 results.