cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A020492 Balanced numbers: numbers k such that phi(k) (A000010) divides sigma(k) (A000203).

Original entry on oeis.org

1, 2, 3, 6, 12, 14, 15, 30, 35, 42, 56, 70, 78, 105, 140, 168, 190, 210, 248, 264, 270, 357, 418, 420, 570, 594, 616, 630, 714, 744, 812, 840, 910, 1045, 1240, 1254, 1485, 1672, 1848, 2090, 2214, 2376, 2436, 2580, 2730, 2970, 3080, 3135, 3339, 3596, 3720, 3828
Offset: 1

Views

Author

Keywords

Comments

The quotient A020492(n)/A002088(n) = SummatorySigma/SummatoryTotient as n increases seems to approach Pi^4/36 or zeta(2)^2 [~2.705808084277845]. - Labos Elemer, Sep 20 2004, corrected by Charles R Greathouse IV, Jun 20 2012
If 2^p-1 is prime (a Mersenne prime) then m = 2^(p-2)*(2^p-1) is in the sequence because when p = 2 we get m = 3 and phi(3) divides sigma(3) and for p > 2, phi(m) = 2^(p-2)*(2^(p-1)-1); sigma(m) = (2^(p-1)-1)*2^p hence sigma(m)/phi(m) = 4 is an integer. So for each n, A133028(n) = 2^(A000043(n)-2)*(2^A000043(n)-1) is in the sequence. - Farideh Firoozbakht, Nov 28 2005
Phi and sigma are both multiplicative functions and for this reason if m and n are coprime and included in this sequence then m*n is also in this sequence. - Enrique Pérez Herrero, Sep 05 2010
The quotients sigma(n)/phi(n) are in A023897. - Bernard Schott, Jun 06 2017
There are 544768 balanced numbers < 10^14. - Jud McCranie, Sep 10 2017
a(975807) = 419998185095132. - Jud McCranie, Nov 28 2017

Examples

			sigma(35) = 1+5+7+35 = 48, phi(35) = 24, hence 35 is a term.
		

References

  • D. Chiang, "N's for which phi(N) divides sigma(N)", Mathematical Buds, Chap. VI pp. 53-70 Vol. 3 Ed. H. D. Ruderman, Mu Alpha Theta 1984.

Crossrefs

Positions of 0's in A063514.

Programs

  • Magma
    [ n: n in [1..3900] | SumOfDivisors(n) mod EulerPhi(n) eq 0 ]; // Klaus Brockhaus, Nov 09 2008
    
  • Mathematica
    Select[ Range[ 4000 ], IntegerQ[ DivisorSigma[ 1, # ]/EulerPhi[ # ] ]& ]
    (* Second program: *)
    Select[Range@ 4000, Divisible[DivisorSigma[1, #], EulerPhi@ #] &] (* Michael De Vlieger, Nov 28 2017 *)
  • PARI
    select(n->sigma(n)%eulerphi(n)==0,vector(10^4,i,i)) \\ Charles R Greathouse IV, Jun 20 2012
    
  • Python
    from sympy import totient, divisor_sigma
    print([n for n in range(1, 4001) if divisor_sigma(n)%totient(n)==0]) # Indranil Ghosh, Jul 06 2017
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A020492_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue,1)):
            f = factorint(m)
            if not prod(p**(e+2)-p for p,e in f.items())%(m*prod((p-1)**2 for p in f)):
                yield m
    A020492_list = list(islice(A020492_gen(),20)) # Chai Wah Wu, Aug 12 2024

Extensions

More terms from Farideh Firoozbakht, Nov 28 2005

A163667 Numbers n such that sigma(n) = 9*phi(n).

Original entry on oeis.org

30, 264, 714, 3080, 3828, 6678, 10098, 12648, 21318, 22152, 24882, 44660, 49938, 61344, 86304, 94944, 118296, 129504, 130356, 147560, 183396, 199386, 201756, 207264, 216936, 248710, 258440, 265914, 275196, 290290, 321204, 505164, 628776, 706266, 706836
Offset: 1

Views

Author

Keywords

Comments

This sequence is a subsequence of A011257 because sqrt(phi(n)*sigma(n)) = 3*phi(n).
If 2^p-1 and 2*3^k-1 are two primes greater than 5 then n = 2^(p-2)*(2^p-1)*3^(k-1)*(2*3^k-1) (the product of two relatively prime terms 2^(p-2)*(2^p-1) and 3^(k-1)*(2*3^k-1) of A011257) is in the sequence. The proof is easy.

Crossrefs

Programs

  • Mathematica
    Select[Range[700000],DivisorSigma[1,# ]==9EulerPhi[ # ]&]
  • PARI
    is(n)=sigma(n)==9*eulerphi(n) \\ Charles R Greathouse IV, May 09 2013

A164646 Numbers n such that sigma(n)/phi(n) = 9/4.

Original entry on oeis.org

51, 477, 595, 3567, 17765, 20735, 41615, 104931, 276651, 470721, 493493, 599169, 834591, 993395, 1092845, 1242505, 1318521, 1479981, 1490645, 1712037, 2344045, 2736305, 2912463, 2986941, 2990709, 3042873, 3187917, 3277611, 3295821, 3767331, 4686039, 5059881
Offset: 1

Views

Author

M. F. Hasler, Aug 22 2009

Keywords

Comments

A subsequence of A011257.
If 3^{k+1}-1 = d*D such that p = 2*b^{k+1}*(d+1) - 1 and q = 2*(b^{k+1}+D)-1 are distinct primes, then n = 3^k*p*q is a term of this sequence.
The same theorem holds for sequences of numbers such that sigma/phi=b^2/(b-1)^2 with other primes b (here b=3; in A068390: b=2, in A164648: b=5).

Crossrefs

Cf. A000010 (=phi), A000203 (=sigma), A068390 (sigma/phi=4), A163667 (sigma/phi=9), A164647 (sigma/phi=16/9).

Programs

  • Mathematica
    Select[Range[506*10^4],DivisorSigma[1,#]/EulerPhi[#]==9/4&] (* Harvey P. Dale, Jun 22 2019 *)
  • PARI
    for( n=1,1e7, sigma(n)==9/4*eulerphi(n) && print1(n","))

A164648 Numbers k such that sigma(k)/phi(k) = 25/16.

Original entry on oeis.org

40859, 48505, 54385, 121771, 156125, 565607, 1154419, 1219933, 1294363, 2448397, 3590461, 9710975, 16067363, 16069573, 17984515, 19013455, 21341755, 25804115, 26515223, 27656155, 29655415, 30372605, 32101255, 34467653, 36546355, 38043943, 38645981, 39559219
Offset: 1

Views

Author

M. F. Hasler, Aug 22 2009

Keywords

Comments

A subsequence of A011257.
If 5^{k+1}-1 = d*D such that p = 2*5^{k+1}*(d+1)-1 and q = 2*(5^{k+1}+D)-1 are distinct primes, then n = 5^k*p*q is a term of this sequence.
The same theorem holds for sequences of numbers such that sigma/phi=b^2/(b-1)^2 with other primes b (here b=5), cf. A164646.

Crossrefs

Cf. A000010 (=phi), A000203 (=sigma), A068390 (sigma/phi=4), A163667 (sigma/phi=9), A164646 (sigma/phi=9/4).

Programs

  • Mathematica
    Select[Range[2000000], DivisorSigma[1, #]/EulerPhi[#] == 25/16 &] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    for( n=1,1e7, sigma(n)==25/16*eulerphi(n) && print1(n","))

Extensions

More terms from Carl Najafi, Aug 16 2011

A293391 Integers n such that sigma(n)/phi(n) is a perfect square.

Original entry on oeis.org

1, 14, 30, 105, 248, 264, 418, 714, 1485, 3080, 3135, 3596, 3828, 3956, 4064, 5396, 6678, 8636, 10098, 12648, 20026, 20790, 21318, 22152, 23374, 24882, 25714, 26040, 35074, 35343, 39105, 41656, 43890, 44660, 49938, 55154, 56134, 56536, 61344, 71145, 74613, 86304, 87087, 94944
Offset: 1

Views

Author

Keywords

Comments

From Robert Israel, Dec 12 2017: (Start)
Intersection of A011257 and A020492.
If x and y are coprime members of the sequence, then x*y is in the sequence.
Contains all members of A133028 except 3. (End)

Examples

			sigma(14)=3*8=24, phi(14)=14*(1/2)*(6/7)=6, sigma(14)/phi(14)=2^2, so 14 is in the list.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 100000 do
        r := numtheory[sigma](n)/numtheory[phi](n) ;
        if issqr(r) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Dec 07 2017
  • Mathematica
    Select[Range[10^5], IntegerQ@ Sqrt[DivisorSigma[1, #]/EulerPhi[#]] &] (* Michael De Vlieger, Dec 08 2017 *)
  • PARI
    isok(n) = my(q=sigma(n)/eulerphi(n)); issquare(q) && (denominator(q) == 1); \\ Michel Marcus, Dec 07 2017; corrected Sep 21 2019

Formula

a(n) = sigma(n)/phi(n) = m^2, for some integer m.

A065146 Numbers n such that the arithmetic, geometric and harmonic means of phi(n) and sigma(n) are all integers.

Original entry on oeis.org

1, 248, 264, 418, 477, 1485, 3080, 3135, 3596, 3828, 5396, 10098, 12648, 20026, 21318, 22152, 23374, 24882, 35074, 35343, 39105, 41656, 44660, 49938, 55154, 56536, 61344, 71145, 74613, 86304, 87087, 104931, 118296, 124605, 129504, 130356, 147560, 150195
Offset: 1

Views

Author

Labos Elemer, Oct 18 2001

Keywords

Examples

			n = 5396, phi(n) = 2520, sigma(n) = 10080, arithmetic mean = 6300, geometric mean = 5040, harmonic mean = 4032; 67 cases < 10^6.
		

Crossrefs

Programs

  • Mathematica
    Do[s = EulerPhi[n]*DivisorSigma[1, n]; z = (EulerPhi[n]+DivisorSigma[1, n])/2; u = h[n]; If[IntegerQ[Sqrt[s]]&&IntegerQ[z]&&IntegerQ[u], Print[n]], {n, 1, 1000000}]
  • PARI
    { n=0; for (m=1, 10^9, e=eulerphi(m); s=sigma(m); if (!issquare(e*s), next); h=(2*e*s)/(e + s); if (frac(h) != 0, next); if (frac((e + s)/2) != 0, next); write("b065146.txt", n++, " ", m); if (n==500, return) ) } \\ Harry J. Smith, Oct 12 2009

Formula

a = (phi(n)+sigma(n))/2, g = sqrt(phi(n)*sigma(n)), h = (2*phi(n)*sigma(n))/(phi(n)+sigma(n)) = g^2/a are all integers; phi() = A000010(), sigma() = A000203().

A164647 Numbers n such that sigma(n)/phi(n) = 16/9.

Original entry on oeis.org

1463, 2945, 8255, 70091, 81809, 89999, 122759, 187625, 193039, 196469, 388585, 494665, 671365, 2311673, 2442583, 2687113, 4209985, 4705285, 4902247, 5393017, 5667389, 5866003, 9248323, 10795967, 11345411, 11670275, 11773027, 13290485, 13741273, 15978487
Offset: 1

Views

Author

M. F. Hasler, Aug 22 2009

Keywords

Comments

A subsequence of A011257.

Crossrefs

Cf. A000010 (=phi), A000203 (=sigma), A068390, A163667, A164646.

Programs

  • PARI
    for( n=1,10^7, sigma(n)==16/9*eulerphi(n) && print1(n","))

Extensions

More terms from Farideh Firoozbakht, Sep 22 2009

A327624 Numbers m such that sigma(m)*phi(m) is a square but sigma(m)/phi(m) is not an integer.

Original entry on oeis.org

51, 170, 194, 364, 405, 477, 595, 679, 760, 780, 1023, 1455, 1463, 1496, 1512, 1524, 1674, 1715, 1731, 1796, 1804, 2058, 2080, 2651, 2754, 2945, 3192, 3410, 3534, 3567, 4381, 4420, 5044, 5130, 5670, 5770, 5784, 5797, 5822, 5859, 7600, 8245
Offset: 1

Views

Author

Bernard Schott, Sep 19 2019

Keywords

Comments

If sigma(m)/phi(m) is a square (m is in A293391) then sigma(m)*phi(m) is also a square (m is in A011257), but the converse is false (see 51 in the Example section). This sequence consists of these counterexamples.

Examples

			phi(51) = 32 and sigma(51) = 72, phi(51) * sigma(51) = 32 * 72 = 2304 = 48^2, but sigma(51)/phi(51) = 72/32 = 9/4 is not an integer.
		

Crossrefs

Equals A293391 \ A011257.
Cf. A020492 (sigma(m)/phi(m) is an integer).
Cf. A000010 (phi), A000203 (sigma).

Programs

  • Magma
    [k:k in [1..9000]| not IsIntegral(SumOfDivisors(k)/EulerPhi(k)) and IsSquare(EulerPhi(k)*SumOfDivisors(k)) ]; // Marius A. Burtea, Sep 19 2019
    
  • Maple
    filter:= v -> sigma(v)/phi(v) <> floor(sigma(v)/phi(v)) and issqr(sigma(v)*phi(v)) : select(filter, [$1..50000]);
  • Mathematica
    sQ[n_] := IntegerQ @ Sqrt[n]; aQ[n_] := sQ[(p = EulerPhi[n]) * (s = DivisorSigma[1, n])] && !sQ[s/p]; Select[Range[10^4], aQ] (* Amiram Eldar, Sep 19 2019 *)
  • PARI
    isok(m) = my(s=sigma(m), e=eulerphi(m)); issquare(s*e) && (s%e); \\ Michel Marcus, Sep 21 2019

A067781 Numbers k such that phi(k) and sigma(k) are both perfect squares.

Original entry on oeis.org

1, 170, 364, 679, 5044, 5130, 5670, 5770, 8721, 8736, 9154, 9639, 9809, 14322, 16376, 22413, 27783, 30256, 32025, 37114, 38760, 51455, 71604, 78570, 82615, 88392, 92004, 100821, 101153, 104168, 115430, 121056, 133569, 139954, 148568, 171069, 177940, 198462, 217868
Offset: 1

Views

Author

Benoit Cloitre, Feb 07 2002

Keywords

Comments

A subsequence of A011257. - M. F. Hasler, Sep 22 2009

Crossrefs

Cf. A000010 (phi), A000203 (sigma), A006532, A011257, A039770.

Programs

  • Mathematica
    Select[Range[250000], And @@ (IntegerQ[Sqrt[#1]] & /@ {EulerPhi[#], DivisorSigma[1, #]} ) &] (* Amiram Eldar, May 08 2025 *)
  • PARI
    isok(k) = {my(f = factor(k)); issquare(eulerphi(f)) && issquare(sigma(f));} \\ Amiram Eldar, May 08 2025

Formula

Equals A006532 intersect A039770. - M. F. Hasler, Sep 22 2009

A114078 Numbers k such that phi(k)*sigma(k) is a fourth power.

Original entry on oeis.org

1, 170, 595, 714, 121056, 480441, 529620, 706063, 706237, 729752, 755972, 815654, 2162808, 2449062, 2827789, 2927848, 2957416, 2994681, 2995419, 3010227, 3019028, 3019772, 3080140, 3093860, 3103464, 3206364, 3213804
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Examples

			phi(595) * sigma(595) = 331776 = 24^4.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 170, p. 54, Ellipses, Paris 2008.

Crossrefs

Cf. A062354, subsequence of A011257.

Programs

  • Magma
    [k:k in [1..3300000]| IsPower(EulerPhi(k)*DivisorSigma(1,k),4)]; // Marius A. Burtea, Sep 19 2019
  • Mathematica
    Select[Range[3300000],IntegerQ[Power[EulerPhi[#] DivisorSigma[1,#], (4)^-1]]&]  (* Harvey P. Dale, Mar 14 2011 *)
  • PARI
    isok(n) = ispower(eulerphi(n)*sigma(n), 4); \\ Michel Marcus, Jan 09 2014
    
Showing 1-10 of 22 results. Next