cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A164646 Numbers n such that sigma(n)/phi(n) = 9/4.

Original entry on oeis.org

51, 477, 595, 3567, 17765, 20735, 41615, 104931, 276651, 470721, 493493, 599169, 834591, 993395, 1092845, 1242505, 1318521, 1479981, 1490645, 1712037, 2344045, 2736305, 2912463, 2986941, 2990709, 3042873, 3187917, 3277611, 3295821, 3767331, 4686039, 5059881
Offset: 1

Views

Author

M. F. Hasler, Aug 22 2009

Keywords

Comments

A subsequence of A011257.
If 3^{k+1}-1 = d*D such that p = 2*b^{k+1}*(d+1) - 1 and q = 2*(b^{k+1}+D)-1 are distinct primes, then n = 3^k*p*q is a term of this sequence.
The same theorem holds for sequences of numbers such that sigma/phi=b^2/(b-1)^2 with other primes b (here b=3; in A068390: b=2, in A164648: b=5).

Crossrefs

Cf. A000010 (=phi), A000203 (=sigma), A068390 (sigma/phi=4), A163667 (sigma/phi=9), A164647 (sigma/phi=16/9).

Programs

  • Mathematica
    Select[Range[506*10^4],DivisorSigma[1,#]/EulerPhi[#]==9/4&] (* Harvey P. Dale, Jun 22 2019 *)
  • PARI
    for( n=1,1e7, sigma(n)==9/4*eulerphi(n) && print1(n","))

A164648 Numbers k such that sigma(k)/phi(k) = 25/16.

Original entry on oeis.org

40859, 48505, 54385, 121771, 156125, 565607, 1154419, 1219933, 1294363, 2448397, 3590461, 9710975, 16067363, 16069573, 17984515, 19013455, 21341755, 25804115, 26515223, 27656155, 29655415, 30372605, 32101255, 34467653, 36546355, 38043943, 38645981, 39559219
Offset: 1

Views

Author

M. F. Hasler, Aug 22 2009

Keywords

Comments

A subsequence of A011257.
If 5^{k+1}-1 = d*D such that p = 2*5^{k+1}*(d+1)-1 and q = 2*(5^{k+1}+D)-1 are distinct primes, then n = 5^k*p*q is a term of this sequence.
The same theorem holds for sequences of numbers such that sigma/phi=b^2/(b-1)^2 with other primes b (here b=5), cf. A164646.

Crossrefs

Cf. A000010 (=phi), A000203 (=sigma), A068390 (sigma/phi=4), A163667 (sigma/phi=9), A164646 (sigma/phi=9/4).

Programs

  • Mathematica
    Select[Range[2000000], DivisorSigma[1, #]/EulerPhi[#] == 25/16 &] (* Carl Najafi, Aug 16 2011 *)
  • PARI
    for( n=1,1e7, sigma(n)==25/16*eulerphi(n) && print1(n","))

Extensions

More terms from Carl Najafi, Aug 16 2011

A171256 Numbers n such that sigma(n) = 10*phi(n) (where sigma=A000203, phi=A000010).

Original entry on oeis.org

168, 270, 570, 2376, 2436, 5016, 6426, 7110, 13566, 15834, 34452, 58520, 62568, 72732, 75210, 113832, 126882, 168756, 169218, 191862, 199368, 223938, 240312, 280488, 308568, 321468, 420888, 449442, 472758, 661848, 673608, 776736, 848540, 854496, 907236
Offset: 1

Views

Author

M. F. Hasler, Mar 19 2010

Keywords

Comments

If n is in this sequence, then for any prime p not dividing n, sigma(np) - 10*phi(np) = 2*sigma(n).

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], DivisorSigma[1, #] == 10 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
  • PARI
    for(k=1,10^6, sigma(k) - 10*eulerphi(k) || print1(k", "));

A171257 Numbers n such that sigma(n) = 11*phi(n) (where sigma=A000203, phi=A000010).

Original entry on oeis.org

2580, 16770, 18630, 28896, 35970, 61404, 66024, 147576, 163944, 215124, 224010, 296184, 399126, 408672, 443394, 464340, 476010, 574308, 856086, 862752, 868428, 931224, 957348, 1004910, 1110186, 1496610, 1721720, 1723290, 1833348, 1971288, 2139852, 2234790
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], DivisorSigma[1, #] == 11 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
  • PARI
    for(k=1,2e6, sigma(k) - 11*eulerphi(k) || print1(k", "));

A171258 Numbers n such that sigma(n) = 13*phi(n) (where sigma=A000203, phi=A000010).

Original entry on oeis.org

630, 5544, 11160, 18810, 27000, 57000, 80388, 161820, 178020, 182880, 242820, 265608, 388620, 391500, 447678, 465192, 522522, 671760, 690120, 711000, 775170, 826500, 901170, 1051830, 1102290, 1157130, 1418160, 1578330, 1679400, 1812384, 1874520, 1993824
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2*10^6],DivisorSigma[1,#]==13EulerPhi[#]&] (* Harvey P. Dale, Mar 29 2018 *)
  • PARI
    for(k=1,2e6, sigma(k) - 13*eulerphi(k) || print1(k", "));

A171259 Numbers n such that sigma(n) = 14*phi(n) (where sigma=A000203, phi=A000010).

Original entry on oeis.org

420, 2730, 5940, 12540, 24024, 38610, 48360, 66528, 77490, 81510, 133920, 140448, 141372, 156420, 163590, 282720, 284580, 298452, 348348, 498420, 600780, 681912, 701220, 771420, 792480, 901530, 918918, 1016730, 1052220, 1150968, 1372680, 1439592, 1654620
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], DivisorSigma[1, #] == 14 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
  • PARI
    for(k=1,2e6, sigma(k) - 14*eulerphi(k) || print1(k", "));

A171260 Numbers n such that sigma(n) = 15*phi(n) (where sigma=A000203, phi=A000010).

Original entry on oeis.org

840, 11880, 12180, 25080, 32130, 67830, 79170, 172260, 282744, 312840, 363660, 569160, 596904, 634410, 696696, 843780, 846090, 959310, 996840, 1119690, 1201560, 1402440, 1542840, 1607340, 1929312, 2104440, 2247210, 2363790, 3309240, 3368040, 3883680
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], DivisorSigma[1, #] == 15 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
  • PARI
    for(k=1,3e6, sigma(k) - 15*eulerphi(k) || print1(k", "));

A164647 Numbers n such that sigma(n)/phi(n) = 16/9.

Original entry on oeis.org

1463, 2945, 8255, 70091, 81809, 89999, 122759, 187625, 193039, 196469, 388585, 494665, 671365, 2311673, 2442583, 2687113, 4209985, 4705285, 4902247, 5393017, 5667389, 5866003, 9248323, 10795967, 11345411, 11670275, 11773027, 13290485, 13741273, 15978487
Offset: 1

Views

Author

M. F. Hasler, Aug 22 2009

Keywords

Comments

A subsequence of A011257.

Crossrefs

Cf. A000010 (=phi), A000203 (=sigma), A068390, A163667, A164646.

Programs

  • PARI
    for( n=1,10^7, sigma(n)==16/9*eulerphi(n) && print1(n","))

Extensions

More terms from Farideh Firoozbakht, Sep 22 2009

A164649 Numbers n such that sigma(n)/phi(n) = 36/25.

Original entry on oeis.org

5797, 10153, 20377, 50953, 383719, 405449, 446039, 486421, 608399, 973709, 1321529, 1521311, 3086369, 3228511, 3451877, 3529813, 3859513, 4552373, 4767721, 5827679, 6194321, 6479599, 6724039, 6927893, 7038241, 7919197, 11696111, 15893773, 16894141, 16924873
Offset: 1

Views

Author

M. F. Hasler, Aug 22 2009

Keywords

Comments

A subsequence of A011257. See A164646-A164650 for related sequences.

Crossrefs

Cf. A000010 (=phi), A000203 (=sigma), A068390 (sigma/phi=4), A163667 (sigma/phi=9), A164646-A164650.

Programs

  • PARI
    for( n=1,1e7, sigma(n)==36/25*eulerphi(n) && print1(n","))

Extensions

More terms from Sean A. Irvine, May 17 2010

A164650 Numbers n such that sigma(n)/phi(n) = 49/36.

Original entry on oeis.org

679, 10127, 20273, 672203, 971261, 1133639, 1247129, 1336231, 1646743, 1701089, 2369471, 2674969, 2722499, 2989909, 3160079, 3597659, 4545749, 6333503, 7127861, 9357101, 10574629, 20070061, 52928293, 67931137, 74731807, 79940069, 80704813, 93444911, 128155333
Offset: 1

Views

Author

M. F. Hasler, Aug 22 2009

Keywords

Comments

A subsequence of A011257.
If 7^{k+1}-1 = d*D such that p = 2*7^{k+1}*(d+1)-1 and q = 2*(7^{k+1}+D)-1 are distinct primes, then n = 7^k*p*q is a term of this sequence.
The same theorem holds for sequences of numbers such that sigma/phi=b^2/(b-1)^2 with other primes b (here b=7), cf. A068390, A164646, A164648.

Crossrefs

Cf. A000010 (=phi), A000203 (=sigma), A068390 (sigma/phi=4), A163667 (sigma/phi=9), A164646-A164649.

Programs

  • PARI
    for( n=1,1e7, sigma(n)==49/36*eulerphi(n) && print1(n","))
Showing 1-10 of 10 results.