cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 103 results. Next

A023897 a(n) = sigma_1(k) / phi(k) where k = A020492(n) is the n-th balanced number.

Original entry on oeis.org

1, 3, 2, 6, 7, 4, 3, 9, 2, 8, 5, 6, 7, 4, 7, 10, 5, 12, 4, 9, 10, 3, 4, 14, 10, 8, 6, 13, 9, 8, 5, 15, 7, 2, 6, 8, 4, 5, 12, 6, 7, 10, 10, 11, 14, 12, 9, 4, 3, 4, 12, 9, 4, 4, 7, 5, 7, 10, 3, 5, 4, 13, 14, 12, 10, 9, 10, 8, 7, 4, 8, 6, 18, 9, 3, 8, 13, 8, 15, 15, 8, 3, 14, 9, 10, 8, 8, 10, 5, 7, 8, 11, 6, 11, 13, 6
Offset: 1

Views

Author

Keywords

Comments

sigma_1(n) is the sum of the divisors of n [same as sigma(n)] (A000203).

Crossrefs

Programs

  • Magma
    [ q: n in [1..20000] | r eq 0 where q, r is Quotrem(SumOfDivisors(n), EulerPhi(n)) ]; // Klaus Brockhaus, Nov 09 2008
    
  • Mathematica
    Select[ Array[ DivisorSigma[ 1, # ]/EulerPhi[ # ]&, 20000 ], IntegerQ ]
  • PARI
    s(n) = {my(f = factor(n)); sigma(f)/eulerphi(f);}
    list(lim) = select(x -> denominator(x) == 1, vector(lim, i, s(i))); \\ Amiram Eldar, Dec 25 2024
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A023897_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue,1)):
            f = factorint(m)
            q, r = divmod(prod(p**(e+2)-p for p,e in f.items()),m*prod((p-1)**2 for p in f))
            if not r:
                yield q
    A023897_list = list(islice(A023897_gen(),20)) # Chai Wah Wu, Aug 12 2024
    

A078539 Least non-balanced x (i.e., not in A020492) such that sigma(2n-1,x)/phi(x) is an integer.

Original entry on oeis.org

38, 46, 295, 38, 235, 749, 38, 3687, 6128, 38, 1415, 46, 38, 4254, 10451, 38, 46, 8351, 38, 334, 4511, 38, 3398, 295, 38, 1286, 46, 38, 148870, 11015, 38, 46, 35519, 38, 10239, 14072, 38, 235, 76088, 38, 5991, 46, 38, 718, 295, 38, 46, 11654, 38, 30761
Offset: 2

Views

Author

Labos Elemer, Dec 02 2002

Keywords

Examples

			n=7: 2n-1 = 13, cases of sigma(13,x)/phi(x) is an integer listed in A015771: 1, 2, 3,6, 12, etc,; the first term which is non-balanced, i.e., not in A020492 is a(7) = 749 = A020492(31); increasing n, the trend of a(n) is roughly the same. If 2n-1 = 3s, i.e., is divisible by 3, then a(3s) = 38. Similar relationships hold for 2n - 1 = 5s, 7s, 11s, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[fl=1; Do[s1=DivisorSigma[1, n]/EulerPhi[n]; sk=DivisorSigma[2*k-1, n]/EulerPhi[n]; If[ !IntegerQ[s1]&&IntegerQ[sk]&&Equal[fl, 1], Print[{n, 2*k-1}]; fl=0], {n, 1, 1000000}], {k, 2, 100}]

Formula

a(n) = min{x; sigma(1,x) mod phi(x) = 0 but sigma(2n-1, x) mod phi(x) is not 0}.

Extensions

a(31) corrected by Amiram Eldar, Jul 21 2019

A078557 Squarefree balanced numbers (i.e., squarefree members of A020492).

Original entry on oeis.org

1, 2, 3, 6, 14, 15, 30, 35, 42, 70, 78, 105, 190, 210, 357, 418, 570, 714, 910, 1045, 1254, 2090, 2730, 3135, 4522, 4674, 5278, 6270, 10659, 12441, 13566, 14630, 15834, 16770, 20026, 21318, 23374, 24871, 24882, 24969, 25070, 25714, 27170, 29029, 33915, 35074
Offset: 1

Views

Author

Labos Elemer, Dec 06 2002

Keywords

Examples

			210 = 2*3*5*7, sigma(210) = 576, phi(210) = 48, 576/48 = 12.
		

Crossrefs

Intersection of A005117 and A020492.

Programs

  • Mathematica
    Do[s=DivisorSigma[1, n]/EulerPhi[n]; If[IntegerQ[s]&&!Equal[MoebiusMu[n], 0], k=k+1; Print[n]], {n, 1, 2100000}]
  • PARI
    isok(k) = {my(f = factor(k)); issquarefree(f) && denominator(prod(i = 1, #f~, (f[i, 1]+1)/(f[i, 1]-1))) == 1;} \\ Amiram Eldar, Feb 24 2025

A342103 Balanced numbers (A020492) that are also arithmetic numbers (A003601).

Original entry on oeis.org

1, 3, 6, 14, 15, 30, 35, 42, 56, 70, 78, 105, 140, 168, 190, 210, 248, 264, 270, 357, 418, 420, 570, 594, 616, 630, 714, 744, 812, 840, 910, 1045, 1240, 1254, 1485, 1672, 1848, 2090, 2214, 2376, 2436, 2580, 2730, 2970, 3080, 3135, 3339, 3596, 3720, 3828, 3956, 4064, 4180
Offset: 1

Views

Author

Bernard Schott, Feb 28 2021

Keywords

Comments

Equivalently, numbers m such that phi(m) (A000010) and tau(m) (A000005) both divide sigma(m) (A000203). In this case, the quotients sigma(m)/phi(m) = A023897(m) and sigma(m)/tau(m) = A102187(m).
Phi, tau and sigma are multiplicative functions and for this reason if k and q are coprime and included in this sequence then k*q is another term.
The only prime in the sequence is 3, because sigma(2)/tau(2) = 3/2 and when p is an odd prime, sigma(p)/phi(p) = (p+1)/(p-1) is an integer iff p=3 with sigma(3)/phi(3) = 4/2 = 2, and also sigma(3)/tau(3) = 4/2 = 2.

Examples

			phi(30) = tau(30) = 8, sigma(30) = 72 and 72/8 = 9, hence 30 is a term.
phi(12) = 4, tau(12) = 6, sigma(12) = 28, phi(12) divides sigma(12), but tau(12) does not divide sigma(12), hence 12 is a balanced number but is not an arithmetic number, and 12 is not a term.
phi(20) = 8, tau(20) = 6, sigma(20) = 42, tau(20) divides sigma(20), but phi(20) does not divide sigma(20), hence 20 is an arithmetic number but is not a balanced number, and 20 is not a term.
		

Crossrefs

Intersection of A003601 and A020492.
Cf. A000005 (tau), A000010 (phi), A000203 (sigma), A023897 (sigma/phi), A102187 (sigma/tau).

Programs

  • Maple
    with(numtheory): filter:= q -> (sigma(q) mod phi(q) = 0) and (sigma(q) mod tau(q) = 0) : select(filter, [$1..5000]);
  • Mathematica
    Select[Range[5000], And @@ Divisible[DivisorSigma[1, #], {DivisorSigma[0, #], EulerPhi[#]}] &] (* Amiram Eldar, Feb 28 2021 *)
  • PARI
    isok(m) = my(s=sigma(m)); !(s % eulerphi(m)) && !(s % numdiv(m)); \\ Michel Marcus, Mar 01 2021

A076375 Numbers k such that both k and 2*k are balanced numbers (A020492).

Original entry on oeis.org

1, 3, 6, 15, 35, 70, 105, 210, 357, 420, 1045, 1485, 2090, 2970, 3135, 3339, 5049, 5940, 6270, 10659, 12441, 12540, 16065, 24871, 24969, 29029, 33915, 35343, 39105, 39585, 49742, 50065, 58058, 58435, 64285, 70686, 71145, 74613, 78210, 87087
Offset: 1

Views

Author

Labos Elemer, Oct 15 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x]/EulerPhi[x] Do[s=f[n]; s1=f[2*n]; If[IntegerQ[s]&&IntegerQ[s1], Print[n]], {n, 1, 100000}]

A342104 Balanced numbers (A020492) that are not arithmetic numbers (A003601).

Original entry on oeis.org

2, 12, 18630, 27000, 443394, 6242022, 14412720, 22315419, 26744100, 44630838, 50496960, 106034880, 128710944, 148536990, 162907584, 212072880, 218470770, 296259930, 349444530, 397253968, 535267776, 641250900, 641418960, 666274653, 684165552, 688208724, 709639408
Offset: 1

Views

Author

Bernard Schott, Feb 28 2021

Keywords

Comments

Equivalently, numbers m such that phi(m) divides sigma(m) but tau(m) does not divide sigma(m), the corresponding quotients sigma(m)/phi(m) = A023897(m).
The only prime in the sequence is 2, because sigma(2)/phi(2) = 3 and sigma(2)/tau(2) = 3/2; then, if p odd prime, sigma(p)/phi(p) = (p+1)/(p-1) is an integer iff p = 3, but for p = 3, tau(3) divides sigma(3) with sigma(3)/tau(3) = 4/2 = 2.

Examples

			Sigma(12) = 28, phi(12) = 4 and tau(12) = 6, hence phi(12) divides sigma(12), but tau(12) does not divide sigma(12), so 12 is a term.
		

Crossrefs

Equals A020492 \ A003601.
Cf. A000005 (tau), A000010 (phi), A000203 (sigma), A023897 (sigma/phi).

Programs

  • Maple
    with(numtheory): filter:= q -> (sigma(q) mod phi(q) = 0) and (sigma(q) mod tau(q) <> 0) : select(filter, [$1..500000]);
  • Mathematica
    Select[Range[500000], Divisible[DivisorSigma[1, #], {DivisorSigma[0, #], EulerPhi[#]}] == {False, True} &] (* Amiram Eldar, Feb 28 2021 *)
  • PARI
    isok(m) = my(s=sigma(m)); !(s % eulerphi(m)) && (s % numdiv(m)); \\ Michel Marcus, Mar 01 2021

Extensions

a(5)-a(27) from Amiram Eldar, Feb 28 2021

A342105 Arithmetic numbers (A003601) that are not balanced numbers (A020492).

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 20, 21, 22, 23, 27, 29, 31, 33, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 51, 53, 54, 55, 57, 59, 60, 61, 62, 65, 66, 67, 68, 69, 71, 73, 77, 79, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 107, 109, 110, 111, 113, 114, 115, 116
Offset: 1

Views

Author

Bernard Schott, Mar 05 2021

Keywords

Comments

Equivalently, numbers m such that tau(m) divides sigma(m) but phi(m) does not divide sigma(m), the corresponding quotients sigma(m)/tau(m) = A102187(m).
Primes in the sequence are primes >= 5; proof: 2 is in A342104 and 3 is in A342103, then for p prime >= 5, phi(p) = p-1 >= 4, tau(p) = 2, sigma(p) = p+1 >= 6; hence 2 divides p+1 but p-1 does not divide p+1.

Examples

			Sigma(21) = 32, tau(21) = 4 and phi(21) = 12, hence tau(21) divides sigma(21), but phi(21) does not divide sigma(21), so 21 is a term.
		

Crossrefs

Equals A003601 \ A020492.
Cf. A000005 (tau), A000010 (phi), A000203 (sigma), A102187 (sigma/tau).

Programs

  • Maple
    with(numtheory): filter:= q -> (sigma(q) mod tau(q) = 0) and (sigma(q) mod phi(q) <> 0) : select(filter, [$1..120]);
  • Mathematica
    Select[Range[120], Divisible[DivisorSigma[1, #], {DivisorSigma[0, #], EulerPhi[#]}] == {True, False} &] (* Amiram Eldar, Mar 05 2021 *)
  • PARI
    isok(m) = my(s=sigma(m)); !(s % numdiv(m)) && (s % eulerphi(m)); \\ Michel Marcus, Mar 05 2021

A076376 Numbers k such that k, 2*k and 4*k are balanced numbers (A020492).

Original entry on oeis.org

3, 35, 105, 210, 1045, 1485, 2970, 3135, 6270, 24871, 29029, 35343, 39105, 50065, 58435, 64285, 70686, 71145, 74613, 78210, 87087, 87685, 124605, 137885, 140335, 142290, 149226, 150195, 174174, 175305, 176715, 192855, 249210, 263055, 300390, 350610, 373065
Offset: 1

Views

Author

Labos Elemer, Oct 15 2002

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x]/EulerPhi[x] Do[s=f[n]; s1=f[2*n]; s2=f[4*n]; If[IntegerQ[s]&&IntegerQ[s1]&&IntegerQ[s2], Print[n]], {n, 1, 1000000}]

A078540 Least non-balanced x (i.e., not in A020492) such that sigma(p(n),x)/phi(x) is an integer, where p(n) = n-th prime.

Original entry on oeis.org

22, 38, 46, 295, 235, 749, 3687, 6128, 1415, 4254, 10451, 8351, 334, 4511, 3398, 1286, 148870, 11015, 35519, 10239, 14072, 76088, 5991, 718, 11654, 30761, 7431, 20993, 700654, 22169, 5095, 4198, 27415, 26744, 14318, 48368, 180878, 16991, 173123, 4166, 5033, 7246
Offset: 1

Views

Author

Labos Elemer, Dec 02 2002

Keywords

Examples

			n=6: prime(6)=13, cases of sigma(13,x)/phi(x) is an integer are listed in A015771: 1, 2, 3, 6, 12, etc.; the first term which is non-balanced, i.e., not in A020492, is a(6) = 749 = A020492(31); a(29) = 700854 and a(45) = 510759 are remarkably large.
		

Crossrefs

Programs

  • Mathematica
    Table[fl=1; Do[s1=DivisorSigma[1, n]/EulerPhi[n]; sk=DivisorSigma[Prime[k], n]/EulerPhi[n]; If[ !IntegerQ[s1]&&IntegerQ[sk]&&Equal[fl, 1], Print[{n, Prime[k]}]; fl=0], {n, 1, 1000000}], {k, 1, 100}]
  • PARI
    lista(nmax) = {my(ps = primes(nmax), pmax = ps[#ps], v = vector(pmax), c = 0, k = 2, f, e, p); while(c < nmax, f = factor(k); e = eulerphi(f); if(sigma(f) % e > 0, for(i = 1, nmax, p = ps[i]; if(!(sigma(f, p) % e) && v[p] == 0, c++; v[p] = k))); k++); for(i = 1, pmax, if(v[i] > 0, print1(v[i], ", ")));} \\ Amiram Eldar, Aug 29 2024

Formula

a(n) = min{x; A000203(x) mod A000005(x) = 0 but sigma(A000040(n), x) mod phi(x) is not 0}.

Extensions

a(18) corrected and more terms added by Amiram Eldar, Aug 29 2024

A076377 Numbers k such that k, 2*k, 4*k and 8*k are balanced numbers (A020492).

Original entry on oeis.org

105, 1485, 3135, 35343, 39105, 71145, 74613, 87087, 124605, 150195, 175305, 192855, 263055, 413655, 421005, 697851, 930699, 1404765, 1873485, 2471931, 2576115, 2965599, 3281265, 3398625, 3937635, 4172259, 4532625, 4589949, 4975965, 5218521, 5474115
Offset: 1

Views

Author

Labos Elemer, Oct 15 2002

Keywords

Comments

The quotients q = Sigma(u)/phi(u) for u = {n, 2n, 4n, 8n} are integers and for all terms, and equal 4, 12, 14, 15 respectively. For u = 16n, q = 31/2, i.e. no integer was found for u < 6000000.
The comment above is true for terms up to a(238) and true for 985 of the first 1000 terms. - Donovan Johnson, Mar 03 2013

Crossrefs

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x]/EulerPhi[x] Do[s=f[n]; s1=f[2*n]; s2=f[4*n]; s3=f[8*n] If[IntegerQ[s]&&IntegerQ[s1]&&IntegerQ[s2]&& IntegerQ[s3], Print[n]], {n, 1, 10000000}]

Extensions

Missing term added by Donovan Johnson, Mar 03 2013
Showing 1-10 of 103 results. Next