cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A020492 Balanced numbers: numbers k such that phi(k) (A000010) divides sigma(k) (A000203).

Original entry on oeis.org

1, 2, 3, 6, 12, 14, 15, 30, 35, 42, 56, 70, 78, 105, 140, 168, 190, 210, 248, 264, 270, 357, 418, 420, 570, 594, 616, 630, 714, 744, 812, 840, 910, 1045, 1240, 1254, 1485, 1672, 1848, 2090, 2214, 2376, 2436, 2580, 2730, 2970, 3080, 3135, 3339, 3596, 3720, 3828
Offset: 1

Views

Author

Keywords

Comments

The quotient A020492(n)/A002088(n) = SummatorySigma/SummatoryTotient as n increases seems to approach Pi^4/36 or zeta(2)^2 [~2.705808084277845]. - Labos Elemer, Sep 20 2004, corrected by Charles R Greathouse IV, Jun 20 2012
If 2^p-1 is prime (a Mersenne prime) then m = 2^(p-2)*(2^p-1) is in the sequence because when p = 2 we get m = 3 and phi(3) divides sigma(3) and for p > 2, phi(m) = 2^(p-2)*(2^(p-1)-1); sigma(m) = (2^(p-1)-1)*2^p hence sigma(m)/phi(m) = 4 is an integer. So for each n, A133028(n) = 2^(A000043(n)-2)*(2^A000043(n)-1) is in the sequence. - Farideh Firoozbakht, Nov 28 2005
Phi and sigma are both multiplicative functions and for this reason if m and n are coprime and included in this sequence then m*n is also in this sequence. - Enrique Pérez Herrero, Sep 05 2010
The quotients sigma(n)/phi(n) are in A023897. - Bernard Schott, Jun 06 2017
There are 544768 balanced numbers < 10^14. - Jud McCranie, Sep 10 2017
a(975807) = 419998185095132. - Jud McCranie, Nov 28 2017

Examples

			sigma(35) = 1+5+7+35 = 48, phi(35) = 24, hence 35 is a term.
		

References

  • D. Chiang, "N's for which phi(N) divides sigma(N)", Mathematical Buds, Chap. VI pp. 53-70 Vol. 3 Ed. H. D. Ruderman, Mu Alpha Theta 1984.

Crossrefs

Positions of 0's in A063514.

Programs

  • Magma
    [ n: n in [1..3900] | SumOfDivisors(n) mod EulerPhi(n) eq 0 ]; // Klaus Brockhaus, Nov 09 2008
    
  • Mathematica
    Select[ Range[ 4000 ], IntegerQ[ DivisorSigma[ 1, # ]/EulerPhi[ # ] ]& ]
    (* Second program: *)
    Select[Range@ 4000, Divisible[DivisorSigma[1, #], EulerPhi@ #] &] (* Michael De Vlieger, Nov 28 2017 *)
  • PARI
    select(n->sigma(n)%eulerphi(n)==0,vector(10^4,i,i)) \\ Charles R Greathouse IV, Jun 20 2012
    
  • Python
    from sympy import totient, divisor_sigma
    print([n for n in range(1, 4001) if divisor_sigma(n)%totient(n)==0]) # Indranil Ghosh, Jul 06 2017
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A020492_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue,1)):
            f = factorint(m)
            if not prod(p**(e+2)-p for p,e in f.items())%(m*prod((p-1)**2 for p in f)):
                yield m
    A020492_list = list(islice(A020492_gen(),20)) # Chai Wah Wu, Aug 12 2024

Extensions

More terms from Farideh Firoozbakht, Nov 28 2005

A068390 Numbers k such that sigma(k) = 4*phi(k).

Original entry on oeis.org

14, 105, 248, 418, 1485, 3135, 3596, 3956, 4064, 5396, 8636, 20026, 23374, 25714, 35074, 35343, 39105, 41656, 55154, 56134, 56536, 71145, 74613, 87087, 124605, 150195, 175305, 192855, 263055, 393104, 413655, 421005, 474548, 604012, 697851, 711988, 819772
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Comments

If 2^p-1 is a prime (Mersenne prime) greater than 3 then 2^(p-2)*(2^p-1) is in the sequence. So for n>1, 2^(A000043(n)-2)*(2^A000043(n)-1) is in the sequence. - Farideh Firoozbakht, Feb 23 2005
Theorem: If m>0, k is an integer and p=2^(m+2)+k-1 is a prime number then n=2^m*p is a solution to the equation sigma(x) = 4*phi(x)-k. The previous comment is the special case k=0. - Farideh Firoozbakht, Oct 01 2014

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, p. 88.

Crossrefs

Subsequence of A248150 (sigma(k) is divisible by 4).

Programs

  • Magma
    [n: n in [1..10^6] | SumOfDivisors(n) eq 4*EulerPhi(n)]; // Vincenzo Librandi, Sep 25 2017
  • Mathematica
    Select[Range[900000],DivisorSigma[1,#]==4EulerPhi[#]&] (* Harvey P. Dale, Nov 29 2013 *)
  • PARI
    for(n=1,300000, if(sigma(n)==4*eulerphi(n),print1(n,",")))
    

Extensions

More terms from Carl Najafi, Aug 16 2011

A293391 Integers n such that sigma(n)/phi(n) is a perfect square.

Original entry on oeis.org

1, 14, 30, 105, 248, 264, 418, 714, 1485, 3080, 3135, 3596, 3828, 3956, 4064, 5396, 6678, 8636, 10098, 12648, 20026, 20790, 21318, 22152, 23374, 24882, 25714, 26040, 35074, 35343, 39105, 41656, 43890, 44660, 49938, 55154, 56134, 56536, 61344, 71145, 74613, 86304, 87087, 94944
Offset: 1

Views

Author

Keywords

Comments

From Robert Israel, Dec 12 2017: (Start)
Intersection of A011257 and A020492.
If x and y are coprime members of the sequence, then x*y is in the sequence.
Contains all members of A133028 except 3. (End)

Examples

			sigma(14)=3*8=24, phi(14)=14*(1/2)*(6/7)=6, sigma(14)/phi(14)=2^2, so 14 is in the list.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 100000 do
        r := numtheory[sigma](n)/numtheory[phi](n) ;
        if issqr(r) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Dec 07 2017
  • Mathematica
    Select[Range[10^5], IntegerQ@ Sqrt[DivisorSigma[1, #]/EulerPhi[#]] &] (* Michael De Vlieger, Dec 08 2017 *)
  • PARI
    isok(n) = my(q=sigma(n)/eulerphi(n)); issquare(q) && (denominator(q) == 1); \\ Michel Marcus, Dec 07 2017; corrected Sep 21 2019

Formula

a(n) = sigma(n)/phi(n) = m^2, for some integer m.
Showing 1-3 of 3 results.