cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A087167 Odd numbers such that sigma(n) - 2n = 6.

Original entry on oeis.org

8925, 32445, 442365
Offset: 1

Views

Author

Farideh Firoozbakht, Oct 19 2003

Keywords

Comments

If m is in this sequence and 5 doesn't divide m then m is an odd Weird number. There are no other terms up to 2*10^9. Jud McCranie wrote: There are no terms between 2*10^9 and 6.5*10^9.
a(4) > 10^12. - Donovan Johnson, Dec 08 2011
a(4) > 10^13. - Giovanni Resta, Mar 29 2013
a(4) > 10^22. - Wenjie Fang, Jun 16 2014
Any term x of this sequence can be combined with any term y of A141548 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. - Timothy L. Tiffin, Sep 13 2016

Examples

			a(1)=8925 because sigma(8925)=2*8925+6 and 8925 is the first odd number such that sigma(n)-2n=6.
		

References

  • R. K. Guy, "Almost Perfect, Quasi-Perfect, Pseudoperfect, Harmonic, Weird, Multiperfect and Hyperperfect Numbers." B2 in Unsolved Problems in Number Theory, 2nd ed.New York:Springer- Verlag, pp. 45-53, 1994.

Crossrefs

Cf. A003380, A077374, A005101, A005835, A141548 (deficiency 6).

Programs

  • Mathematica
    Do[If[OddQ[n] && DivisorSigma[1, n] - 2n == 6, Print[n]], {n, 2*10^9}]
  • PARI
    is(n)=n%2 && sigma(n)==2*n+6 \\ Charles R Greathouse IV, Mar 09 2014

A088012 Odd solutions to abs(sigma(k) - 2k) <= log(k). Numbers k whose abundance-radius does not exceed log(k).

Original entry on oeis.org

1155, 8925, 32445, 442365, 159030135, 815634435, 2586415095, 1956860570050575, 221753180448460815, 747406020889133775
Offset: 1

Views

Author

Keywords

Comments

This sequence should include odd perfect numbers too, if they exist.
From Walter Nissen, Dec 15 2005: (Start)
abundancy(k) k 2k sigma(k) abundance
1.99480519480519 1155 2310 2304 -6
2.00067226890756 8925 17850 17856 6
2.00018492834027 32445 64890 64896 6
2.00001356346004 442365 884730 884736 6
2.00000011318610 159030135 318060270 318060288 18
1.99999999264376 815634435 1631268870 1631268864 -6
2.00000000695943 2586415095 5172830190 5172830208 18
As it happens, abundance of these is -6, 6 or 18. This is not necessarily true for larger terms. (End)
See also A171929 and A188597 and A188263 for sequences of numbers (any / deficient / abundant) whose relative abundancy tends to 2. - M. F. Hasler, Feb 19 2017
3278298202600507814120339275775985 is also a term with abundance 30. In fact, it and 815634435 are the only odd terms known where abs(sigma(k)-2k) <= log_10(k). - Alexander Violette, Nov 05 2020; updated by Max Alekseyev, Jul 27 2025
Also includes 827880257692739174385 and 255286886041240176056063754225. - Max Alekseyev, Jul 27 2025

Examples

			1155 is in the sequence because sigma(1155) = 2304, giving 2*1155 - 2304 = 6, while natural log of 1155 is about 7.05.
From _M. F. Hasler_, Jul 18 2016: (Start)
We have the following factorizations:
1155 = 3 * 5 * 7 * 11,
8925 = 3 * 5^2 * 7 * 17,
32445 = 3^2 * 5 * 7 * 103,
442365 = 3 * 5 * 7 * 11 * 383,
159030135 = 3^5 * 5 * 11 * 73 * 163,
815634435 = 3 * 5 * 7 * 11 * 547 * 1291,
2586415095 = 3^2 * 5 * 11 * 31 * 41 * 4111.
The sequence appears to be a subsequence of A171929. (End)
		

Crossrefs

Programs

  • Mathematica
    abu[x_] := Abs[DivisorSigma[1, x]-2*x] Do[If[ !Greater[abu[n], Log[n]//N]&&OddQ[n], Print[n]], {n, 1, 100000}]
  • PARI
    is(n)=n%2 && abs(sigma(n)-2*n)<=log(n) \\ Charles R Greathouse IV, Feb 21 2017

Extensions

a(7) from Donovan Johnson, Dec 21 2008
a(9) from Alexander Violette confirmed and a(8), a(10) added by Max Alekseyev, Jul 27 2025

A088007 Numbers n such that abs(sigma(n) - 2n) <= sqrt(n).

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 16, 18, 20, 28, 32, 44, 50, 52, 64, 70, 88, 104, 110, 128, 130, 136, 152, 174, 184, 186, 196, 222, 232, 246, 256, 258, 272, 282, 304, 315, 318, 354, 366, 368, 402, 426, 438, 464, 474, 496, 498, 512, 534, 550, 582, 592, 606, 618, 642, 650, 654
Offset: 1

Views

Author

Labos Elemer, Oct 20 2003

Keywords

Comments

Abundance-radius = abs(sigma(n)-2n) does not exceed square root.

Crossrefs

Programs

  • Mathematica
    abu[x_] := Abs[DivisorSigma[1, x]-2*x] Do[If[ !Greater[abu[n], Sqrt[n]//N], Print[n]], {n, 1, 100000}]
  • PARI
    is(n)=abs(sigma(n)-2*n)<=sqrtint(n) \\ Charles R Greathouse IV, Mar 09 2014

Extensions

New name from Charles R Greathouse IV, Mar 09 2014

A087485 Odd numbers n such that 2n - sigma(n) = 6.

Original entry on oeis.org

7, 15, 315, 1155, 815634435
Offset: 1

Views

Author

Farideh Firoozbakht, Oct 23 2003

Keywords

Comments

This is a subsequence of A077374.
Except for the first term, all known terms of this sequence are divisible by 15. Is there a number n > 1 such that gcd(a(n),3)=1 or gcd(a(n),5)=1?
a(6) > 10^13. - Giovanni Resta, Mar 29 2013
Also, a subsequence of A141548. - M. F. Hasler, Apr 12 2015
The terms a(3) through a(5) are of the form a(k)*p*q, but I have proved that there is no other term of this form with k <= 5. - M. F. Hasler, Apr 13 2015
The terms are also of the form a(n) = 2*p(n) + 1, with primes p(n) = 3, 7, 157, 577, 407817217. All but the last one are such that 2*p(n) - 1 = a(n) - 2 is again prime. - M. F. Hasler, Nov 27 2016
Terms a(2..5) satisfy 2*a(n) - nextprime(sigma(a(n))) = (-1)^n, see also A067795. - M. F. Hasler, Feb 14 2017

Examples

			15 is in the sequence because 2*15-sigma(15)=6.
		

Crossrefs

Programs

  • Mathematica
    Do[If[OddQ[n]&&2n-DivisorSigma[1, n]==6, Print[n]], {n, 2*10^9}]
  • PARI
    is(n)=bittest(n,0)&&sigma(n)+6==2*n \\ M. F. Hasler, Apr 12 2015

Formula

a(3) = a(2)*3*7; a(4) = a(2)*7*11 with 7 = precprime(a(2)*2/3), 11=nextprime(a(2)*2/3); a(5) = a(4)*547*1291. - M. F. Hasler, Apr 13 2015

A088011 Even and odd solutions to abs(sigma(x)-2x) <= log(x). Numbers n whose abundance-radius does not exceed log(n).

Original entry on oeis.org

4, 6, 8, 10, 16, 20, 28, 32, 64, 70, 88, 104, 110, 128, 136, 152, 256, 464, 496, 512, 592, 650, 884, 1024, 1155, 1888, 1952, 2048, 2144, 4030, 4096, 5830, 8128, 8192, 8384, 8925, 11096, 16384, 17816, 18632, 18904, 32128, 32445, 32768, 32896, 33664, 45356
Offset: 1

Views

Author

Labos Elemer, Oct 20 2003

Keywords

Comments

See A088012 for the subsequence of odd terms, only 7 being known up to 10^13. - M. F. Hasler, Feb 21 2017

Crossrefs

Programs

  • Mathematica
    abu[x_] := Abs[DivisorSigma[1, x]-2*x] Do[If[ !Greater[abu[n], Log[n]//N], Print[n]], {n, 1, 100000}]
  • PARI
    (is(n)=abs(sigma(n)-2*n)M. F. Hasler, Feb 21 2017

A088834 Numbers k such that sigma(k) == 6 (mod k).

Original entry on oeis.org

1, 5, 6, 25, 180, 8925, 32445, 442365
Offset: 1

Views

Author

Labos Elemer, Oct 29 2003

Keywords

Comments

For each integer j in A059609, 2^(j-1)*(2^j - 7) is in the sequence. E.g., for j = A059609(1) = 39 we get 151115727449904501489664. - M. F. Hasler and Farideh Firoozbakht, Dec 03 2013
No more terms to 10^10. - Charles R Greathouse IV, Dec 05 2013
a(9) > 10^13. - Giovanni Resta, Apr 02 2014
a(9) > 1.5*10^14. - Jud McCranie, Jun 02 2019
No more terms < 2.7*10^15. - Jud McCranie, Jul 27 2025

Examples

			Sigma(25) = 31 = 1*25 + 6, so 31 mod 25 = 6.
		

Crossrefs

Cf. A087167 (a subsequence).
Cf. A059609.

Programs

  • Mathematica
    Select[Range[1000000], Mod[DivisorSigma[1, #] - 6, #] == 0 &] (* T. D. Noe, Dec 03 2013 *)
  • PARI
    isok(n) = Mod(sigma(n), n) == 6; \\ Michel Marcus, Jan 03 2023

Extensions

Terms corrected by Charles R Greathouse IV and Farideh Firoozbakht, Dec 03 2013

A088008 Solutions to sigma(x) - 2x <= x^(1/3), both even and odd. Abundance-radius = abs(sigma(n)-2n) does not exceed 3rd root of n.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 16, 20, 28, 32, 64, 70, 88, 104, 110, 128, 136, 152, 256, 315, 464, 496, 512, 592, 650, 836, 884, 1012, 1024, 1155, 1696, 1758, 1842, 1866, 1878, 1888, 1902, 1952, 1986, 2022, 2048, 2082, 2094, 2118, 2144, 2154, 2202, 2238, 2272, 2274, 2298
Offset: 1

Views

Author

Labos Elemer, Oct 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    abu[x_] := Abs[DivisorSigma[1, x]-2*x] Do[If[ !Greater[abu[n], n^(1/3)//N], Print[n]], {n, 1, 100000}]
    Select[Range[2300],Abs[DivisorSigma[1,#]-2#]<=CubeRoot[#]&] (* Harvey P. Dale, Feb 22 2023 *)

A088005 Numbers whose abundance is (+-1) times a prime.

Original entry on oeis.org

3, 9, 10, 18, 20, 25, 36, 49, 50, 81, 100, 104, 121, 136, 196, 225, 289, 324, 338, 392, 464, 484, 576, 650, 676, 784, 800, 841, 900, 961, 968, 1058, 1089, 1156, 1225, 1250, 1352, 1682, 1936, 1952, 2209, 2312, 2450, 2500, 2888, 3136, 3364, 3721, 4225, 4356
Offset: 1

Views

Author

Labos Elemer, Oct 18 2003

Keywords

Examples

			n=18: sigma[18]=18+9+6+3+2+1=39, 2n=36, abundance=3, a prime;
n=25: sigma[25]=25+5+1=31, 2n=50, abundance=-19.
		

Crossrefs

Programs

  • Mathematica
    ab[x_] := DivisorSigma[1, x]-2*x Do[If[PrimeQ[s=ab[n]], Print[{n, s}]], {n, 1, 10000}]
  • PARI
    isok(n) = isprime(abs(sigma(n)-2*n)); \\ Michel Marcus, Sep 21 2019

Formula

abs(sigma(n)-2n) is a prime.

A088010 Odd numbers n such that abs(sigma(n)-2n) <= n^(1/3). Abundance-radius = abs(sigma(n)-2n) does not exceed cubic root of n and n is odd.

Original entry on oeis.org

1, 315, 1155, 8415, 8925, 31815, 32445, 33705, 34335, 78975, 351351, 430815, 437745, 442365, 449295, 730125, 1805475, 7667625, 13800465, 14571585, 16029405, 16286445, 20297745, 20355825, 20487159, 21003885, 22982505, 23082885
Offset: 1

Views

Author

Labos Elemer, Oct 20 2003

Keywords

Crossrefs

Programs

  • Mathematica
    abu[x_] := Abs[DivisorSigma[1, x]-2*x] Do[If[ !Greater[abu[n], n^(1/3)//N]&&OddQ[n], Print[n]], {n, 1, 100000}]
  • PARI
    isok(n) = (n % 2) && (abs(sigma(n)-2*n) < sqrtn(n, 3)); \\ Michel Marcus, Nov 10 2017

Extensions

a(17)-a(28) from Donovan Johnson, Feb 01 2009

A117346 Near-multiperfects: numbers m such that abs(sigma(m) mod m) <= log(m).

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 10, 11, 13, 16, 17, 19, 20, 23, 28, 29, 31, 32, 37, 41, 43, 47, 53, 59, 61, 64, 67, 70, 71, 73, 79, 83, 88, 89, 97, 101, 103, 104, 107, 109, 110, 113, 120, 127, 128, 131, 136, 137, 139, 149, 151, 152, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199
Offset: 1

Views

Author

Walter Nissen, Mar 09 2006

Keywords

Comments

Sequences A117346 through A117350 are an attempt to improve on sequences A045768 through A045770, A077374, A087167, A087485 and A088007 through A088012 and related sequences (but not to replace them) by using a more significant definition of "near." E.g., is sigma(n) really "near" a multiple of n, for n=9? Or n=18? Sigma is the sum_of_divisors function.

Examples

			70 is in the sequence because sigma(70) = 144 = 2*70 + 4, while 4 < log(70) ~= 4.248.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B2.

Crossrefs

Cf. A045768 through A045770, A077374, A087167, A087485, A088007 through A088012, A117347 through A117350.

Programs

  • Mathematica
    asmlQ[n_]:=Module[{p=Mod[DivisorSigma[1,n],n]},If[p>n/2,p=n-p];p<=Log[n]];
    Select[Range[200],asmlQ] (* Harvey P. Dale, Dec 25 2013 *)

Extensions

First term prepended by Harvey P. Dale, Dec 25 2013
Showing 1-10 of 22 results. Next