cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188623 Number of reachable configurations in a chip-firing game on a triangle starting with n chips on one vertex.

Original entry on oeis.org

1, 2, 2, 5, 7, 8, 12, 15, 17, 22, 26, 29, 35, 40, 44, 51, 57, 62, 70, 77, 83, 92, 100, 107, 117, 126, 134, 145, 155, 164, 176, 187, 197, 210, 222, 233, 247, 260, 272, 287, 301, 314, 330, 345, 359, 376, 392, 407, 425, 442, 458, 477, 495, 512, 532, 551, 569, 590, 610, 629, 651, 672, 692, 715, 737, 758, 782, 805, 827, 852, 876, 899, 925, 950, 974, 1001
Offset: 1

Views

Author

Jon Schneider, Apr 05 2011

Keywords

Comments

Quasipolynomial with period 3 (see formulas below).

Examples

			For n=4, a(4)=5 because the reachable configurations are: (4, 0, 0), (2, 1, 1), (0, 2, 2), (1, 0, 3), (3, 0, 1).
		

Programs

  • Mathematica
    Table[(n (n + 3) - 4 (-1)^Floor[2 n/3 + 1/3] - 2)/6, {n, 1, 80}]
    (* Bruno Berselli, Feb 03 2016 *)
  • Sage
    [(n*(n+3)-4*(-1)^floor(2*n/3+1/3)-2)/6 for n in (1..80)] # Bruno Berselli, Feb 03 2016

Formula

a(3*k) = (3*k^2 + 3*k - 2)/2,
a(3*k+1) = (3*k^2 + 5*k + 2)/2,
a(3*k+2) = (3*k^2 + 7*k + 4)/2.
G.f.: x*(1 - x^2 + 2*x^3 - x^4)/((1 + x + x^2)*(1 - x)^3). - Bruno Berselli, Feb 03 2016
a(n) = (n*(n + 3) - 4*(-1)^floor(2*n/3 + 1/3) - 2)/6. - Bruno Berselli, Feb 03 2016