cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188628 a(n) = smallest k such that k*2^n - 7 is a square.

Original entry on oeis.org

7, 4, 2, 1, 1, 1, 2, 1, 11, 11, 32, 16, 8, 4, 2, 1, 4006, 2003, 9284, 4642, 2321, 107566, 53783, 313702, 156851, 1364479, 1493338, 746669, 12145148, 6072574, 3036287, 107186842, 53593421, 323781196, 161890598, 80945299, 3501584548, 1750792274, 875396137
Offset: 0

Views

Author

Michel Lagneau, Apr 06 2011

Keywords

Comments

From Michel Lagneau, Mar 04 2015: (Start)
The sequence is infinite. Proof by induction:
Given an integer n>0. Suppose there are an infinity of perfect squares of the form k*2^n - 7 = b(n)^2 for some integer k.
For all integers n, there exists an integer b(n) such that b(n)^2 == -7 (mod 2^n). If n <=3, b(n)=1 is appropriate. Suppose there exists b(n) such that b(n)^2 == -7 (mod 2^n) for some n >=3. We prove that b(n+1)^2 == -7 (mod 2^(n+1)). In the first case, we take b(n+1) = b(n) if k is even, and in the second case we take b(n+1) = 2^(n-1)- b(n). Then b(n+1)^2 = b(n)^2 - 2^n*b(n) + 2^(2n-2) == b(n)^2 - 2^n*b(n) (mod 2^(n+1)).
But b(n)^2 = k*2^n-7 => b(n)^2 - 2^n*b(n) = 2^n(k-b(n)) - 7 == - 7 (mod 2^(n+1)) because k - b(n) is even (k is odd and b(n) is odd).
With n>=3 and b(n) odd, the proof is complete.
Finally, we see that the sequence b(n) is unbounded because b(n)^2 >=2^n - 7 for all positive integers n. This completes the proof because, for all p >=n, b(p)^2 == -7 (mod 2^n).
The corresponding squares of the sequence are 1, 1, 1, 3^2, 5^2, 11^2, 11^2, 53^2, 75^2, 181^2, 181^2, 181^2, 181^2, 181^2, 181^2, 16203^2, 16203^2, 49333^2, 49333^2, 49333^2, 474955^2, ...
With the property:
b(2) + b(3) = 1+1 = 2^1;
b(3) + b(4) = 1+3 = 2^2;
b(4) + b(5) = 3+5 = 2^3;
b(5) + b(6) = 5+11 = 2^4;
b(7) + b(8) = 11+53 = 2^6;
b(8) + b(9) = 53+75=2^7;
b(9) + b(10) = 75+181=2^8;
b(15) + b(16) = 181+16203=2^14;
(End)
To get a(n), find the smallest term of A117619 that is divisible by 2^n, and divide it by 2^n. - Michel Marcus, Mar 05 2015
a(n)=1 for n=3, 4, 5, 7, 15; see A060728. - Michel Marcus, Mar 05 2015

Crossrefs

Cf. A117619 (n^2+7).

Programs

  • Maple
    A188628 := proc(n) for k from 1 do if issqr(k*2^n-7) then return k; end if; end do:
    end proc:
    for n from 0 do printf("%d,\n",A188628(n)) ; end do; # R. J. Mathar, Apr 09 2011
  • Mathematica
    f[n_] := Block[{k = 0}, While[!IntegerQ[Sqrt[k*2^n - 7]], k++]; k]; Table[f[n], {n, 0, 24}] (* Michael De Vlieger, Mar 04 2015 *)
  • PARI
    a(n) = {k=1; while (! issquare(k*2^n - 7), k++); k;} \\ Michel Marcus, Mar 04 2015

Formula

b(1) = b(2) = b(3) = 1; b(n+1)= 2^(n-1)-b(n) or b(n+1) = b(n).
k*2^n - 7 = b(n)^2 => a(n) = k = (b(n)^2 + 7)/2^n if b(n) different from b(n-1) or a(n) = a(n-1)/2 if a(n-1) is even (or if b(n) = b(n-1)).

Extensions

a(0) lowered from 8 to 7, a(25) from 2986676 to 1364479 by R. J. Mathar, Apr 09 2011
a(31)-a(38) from Michel Lagneau, Mar 04 2015