A188628 a(n) = smallest k such that k*2^n - 7 is a square.
7, 4, 2, 1, 1, 1, 2, 1, 11, 11, 32, 16, 8, 4, 2, 1, 4006, 2003, 9284, 4642, 2321, 107566, 53783, 313702, 156851, 1364479, 1493338, 746669, 12145148, 6072574, 3036287, 107186842, 53593421, 323781196, 161890598, 80945299, 3501584548, 1750792274, 875396137
Offset: 0
Keywords
Links
- Michel Lagneau, Proof
Crossrefs
Cf. A117619 (n^2+7).
Programs
-
Maple
A188628 := proc(n) for k from 1 do if issqr(k*2^n-7) then return k; end if; end do: end proc: for n from 0 do printf("%d,\n",A188628(n)) ; end do; # R. J. Mathar, Apr 09 2011
-
Mathematica
f[n_] := Block[{k = 0}, While[!IntegerQ[Sqrt[k*2^n - 7]], k++]; k]; Table[f[n], {n, 0, 24}] (* Michael De Vlieger, Mar 04 2015 *)
-
PARI
a(n) = {k=1; while (! issquare(k*2^n - 7), k++); k;} \\ Michel Marcus, Mar 04 2015
Formula
b(1) = b(2) = b(3) = 1; b(n+1)= 2^(n-1)-b(n) or b(n+1) = b(n).
k*2^n - 7 = b(n)^2 => a(n) = k = (b(n)^2 + 7)/2^n if b(n) different from b(n-1) or a(n) = a(n-1)/2 if a(n-1) is even (or if b(n) = b(n-1)).
Extensions
a(0) lowered from 8 to 7, a(25) from 2986676 to 1364479 by R. J. Mathar, Apr 09 2011
a(31)-a(38) from Michel Lagneau, Mar 04 2015
Comments