A188635 Continued fraction expansion of length/width of metagolden rectangle.
2, 10, 2, 40, 10, 2, 2, 1, 14, 1, 12, 3, 2, 1, 3, 9, 2, 12, 3, 1, 5, 1, 51, 29, 1, 3, 2, 35, 1, 27, 3, 75, 5, 1, 3, 2, 36, 1, 5, 1, 1, 3, 1, 2, 40, 1, 2, 7, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 8, 11, 6, 1, 2, 1, 3, 1, 2, 7, 1, 9, 1, 1, 9, 2, 1, 2, 1, 2, 7, 2, 34, 9, 13, 1, 2, 2, 24, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 1, 2, 4, 11, 3, 1, 3, 1, 6, 1, 5, 20, 2, 1, 1, 4, 10
Offset: 0
References
- Joe Roberts, Elementary Number Theory: A Problem Oriented Approach, MIT Press, Cambridge, Massachusetts, 1977.
Links
- D. Huylebrouck, The Meta-Golden Ratio Chi, Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture.
- Clark Kimberling, A Visual Euclidean Algorithm, The Mathematics Teacher 76 (1983) 108-109.
- Clark Kimberling, Two kinds of golden triangles, generalized to match continued fractions, Journal for Geometry and Graphics, 11 (2007) 165-171.
Programs
-
Mathematica
t=(1+5^(1/2))/2; r=(t+(t^2+4)^(1/2))/2 FullSimplify[r] N[r, 130] RealDigits[N[r, 130]][[1]] ContinuedFraction[r,120] (*End. Following is another approach.*) r = (1 + 5^(1/2))/2; FromContinuedFraction[{r, {r}}] FullSimplify[%] N[%, 150] RealDigits[%] (*A136319*) ContinuedFraction[%%, 120] (*A188635*)
Formula
Extensions
Offset changed by Andrew Howroyd, Jul 08 2024
Comments