A188644 Array of (k^n + k^(-n))/2 where k = (sqrt(x^2-1) + x)^2 for integers x >= 1.
1, 1, 1, 1, 7, 1, 1, 97, 17, 1, 1, 1351, 577, 31, 1, 1, 18817, 19601, 1921, 49, 1, 1, 262087, 665857, 119071, 4801, 71, 1, 1, 3650401, 22619537, 7380481, 470449, 10081, 97, 1, 1, 50843527, 768398401, 457470751, 46099201, 1431431, 18817, 127, 1
Offset: 0
Examples
Row 2 gives {( (2+sqrt(3))^(2*n) + (2-sqrt(3))^(2*n) )/2}. Square array begins: | 0 1 2 3 4 -----+--------------------------------------------- 1 | 1, 1, 1, 1, 1, ... 2 | 1, 7, 97, 1351, 18817, ... 3 | 1, 17, 577, 19601, 665857, ... 4 | 1, 31, 1921, 119071, 7380481, ... 5 | 1, 49, 4801, 470449, 46099201, ... 6 | 1, 71, 10081, 1431431, 203253121, ... 7 | 1, 97, 18817, 3650401, 708158977, ... 8 | 1, 127, 32257, 8193151, 2081028097, ... 9 | 1, 161, 51841, 16692641, 5374978561, ... 10 | 1, 199, 79201, 31521799, 12545596801, ... 11 | 1, 241, 116161, 55989361, 26986755841, ... 12 | 1, 287, 164737, 94558751, 54276558337, ... 13 | 1, 337, 227137, 153090001, 103182433537, ... 14 | 1, 391, 305761, 239104711, 186979578241, ... 15 | 1, 449, 403201, 362074049, 325142092801, ... ...
Links
Crossrefs
Programs
-
Mathematica
max = 9; y = -1; t = Table[k = ((x^2 + y)^(1/2) + x)^2; ((k^n) + (k^(-n)))/2 // FullSimplify, {n, 0, max - 1}, {x, 1, max}]; Table[ t[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 17 2013 *)
Formula
A(n,k) = Sum_{j=0..k} binomial(2*k,2*j)*(n^2-1)^(k-j)*n^(2*j). - Seiichi Manyama, Jan 01 2019
Extensions
Edited by Seiichi Manyama, Dec 30 2018
More terms from Seiichi Manyama, Jan 01 2019
Comments