A188645 Array of ((k^n)+(k^(-n)))/2 where k=(sqrt(x^2+1)+x)^2 for integers x>=1.
1, 3, 1, 17, 9, 1, 99, 161, 19, 1, 577, 2889, 721, 33, 1, 3363, 51841, 27379, 2177, 51, 1, 19601, 930249, 1039681, 143649, 5201, 73, 1, 114243, 16692641, 39480499, 9478657, 530451, 10657, 99, 1, 665857, 299537289, 1499219281, 625447713, 54100801, 1555849, 19601, 129, 1
Offset: 0
Examples
Square array begins: | 0 1 2 3 4 -----+--------------------------------------------- 1 | 1, 3, 17, 99, 577, ... 2 | 1, 9, 161, 2889, 51841, ... 3 | 1, 19, 721, 27379, 1039681, ... 4 | 1, 33, 2177, 143649, 9478657, ... 5 | 1, 51, 5201, 530451, 54100801, ... 6 | 1, 73, 10657, 1555849, 227143297, ... 7 | 1, 99, 19601, 3880899, 768398401, ... 8 | 1, 129, 33281, 8586369, 2215249921, ... 9 | 1, 163, 53137, 17322499, 5647081537, ... 10 | 1, 201, 80801, 32481801, 13057603201, ... 11 | 1, 243, 118097, 57394899, 27893802817, ... 12 | 1, 289, 167041, 96549409, 55805391361, ... 13 | 1, 339, 229841, 155831859, 105653770561, ... 14 | 1, 393, 308897, 242792649, 190834713217, ... 15 | 1, 451, 406801, 366934051, 330974107201, ... ...
Links
Crossrefs
Programs
-
Mathematica
max = 9; y = 1; t = Table[k = ((x^2 + y)^(1/2) + x)^2; ((k^n) + (k^(-n)))/2 // FullSimplify, {n, 0, max - 1}, {x, 1, max}]; Table[ t[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 17 2013 *)
Formula
A(n,k) = Sum_{j=0..k} binomial(2*k,2*j)*(n^2+1)^(k-j)*n^(2*j). - Seiichi Manyama, Jan 01 2019
Extensions
Edited and extended by Seiichi Manyama, Jan 01 2019
Comments