A188646 Array of a(n)=a(n-1)*k-((k-1)/(k^n)) where a(0)=1 and k=(sqrt(x^2-1)+x)^2 for integers x>=1.
1, 1, 1, 1, 13, 1, 1, 181, 33, 1, 1, 2521, 1121, 61, 1, 1, 35113, 38081, 3781, 97, 1, 1, 489061, 1293633, 234361, 9505, 141, 1, 1, 6811741, 43945441, 14526601, 931393, 20021, 193, 1, 1, 94875313, 1492851361, 900414901, 91267009, 2842841, 37441, 253, 1
Offset: 0
Examples
Square array begins: | 0 1 2 3 4 -----+--------------------------------------------- 1 | 1, 1, 1, 1, 1, ... 2 | 1, 13, 181, 2521, 35113, ... 3 | 1, 33, 1121, 38081, 1293633, ... 4 | 1, 61, 3781, 234361, 14526601, ... 5 | 1, 97, 9505, 931393, 91267009, ... 6 | 1, 141, 20021, 2842841, 403663401, ... 7 | 1, 193, 37441, 7263361, 1409054593, ... 8 | 1, 253, 64261, 16322041, 4145734153, ... 9 | 1, 321, 103361, 33281921, 10716675201, ... 10 | 1, 397, 158005, 62885593, 25028308009, ... 11 | 1, 481, 231841, 111746881, 53861764801, ... 12 | 1, 573, 328901, 188788601, 108364328073, ... 13 | 1, 673, 453601, 305726401, 206059140673, ... 14 | 1, 781, 610741, 477598681, 373481557801, ... 15 | 1, 897, 805505, 723342593, 649560843009, ... ...
Links
Crossrefs
Programs
-
Mathematica
A[n_, k_] := 1/n ChebyshevT[2k+1, n]; Table[A[n-k, k], {n, 1, 9}, {k, n-1, 0, -1}] // Flatten (* Jean-François Alcover, Jan 02 2019, after Seiichi Manyama *)
Formula
A(n,k) = 2 * A188644(n,k) - A(n,k-1).
A(n,k) = Sum_{j=0..k} binomial(2*k+1,2*j+1)*(n^2-1)^(k-j)*n^(2*j). - Seiichi Manyama, Jan 01 2019
Extensions
Edited and extended by Seiichi Manyama, Jan 01 2019
Comments