A188649 Least common multiple of reversals of divisors of n in decimal representation.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 84, 31, 574, 255, 488, 71, 162, 91, 20, 84, 22, 32, 168, 260, 62, 72, 1148, 92, 510, 13, 11224, 33, 6106, 1855, 2268, 73, 15106, 93, 40, 14, 6888, 34, 44, 4590, 64, 74, 10248, 658, 260, 1065, 3100, 35, 3240, 55, 149240, 6825, 7820, 95, 7140, 16, 26, 252, 11224, 8680, 66, 76, 12212, 96, 152110, 17, 4536, 37, 6862, 251940, 2024204, 77
Offset: 1
Examples
Divisors(42) = {1,2,3,6,7,14,21,42}, therefore a(42) = lcm(1,2,3,6,7,41,12,24) = 6888.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index entries for sequences related to lcm's
Crossrefs
Programs
-
Haskell
a188649 n = foldl lcm 1 $ map a004086 $ filter ((== 0) . mod n) [1..n]
-
PARI
a(n) = lcm(apply(x->fromdigits(Vecrev(digits(x))), divisors(n))); \\ Michel Marcus, Mar 13 2018
-
Python
from math import lcm from sympy import divisors def a(n): return lcm(*(int(str(d)[::-1]) for d in divisors(n))) print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Aug 14 2022