A188651 Products of two primes (i.e., "semiprimes") that are the sum of three consecutive primes.
10, 15, 49, 121, 143, 159, 187, 235, 287, 301, 319, 329, 371, 395, 407, 471, 519, 533, 551, 565, 581, 589, 633, 679, 689, 713, 731, 749, 771, 789, 803, 817, 841, 961, 985, 1079, 1099, 1119, 1135, 1169, 1207, 1271, 1285, 1315, 1349, 1391, 1457, 1477, 1585
Offset: 1
Keywords
Examples
a(1) = 10 = 2*5 = A034961(1) = prime(1) + prime(2) + prime(3) = 2 + 3 + 5, a(2) = 15 = 3*5 = A034961(2) = prime(2) + prime(3) + prime(4) = 3 + 5 + 7, a(3) = 49 = 7*7 = A080665(1) = A034961(6) = prime(6) + prime(7) + prime(8) = 13 + 17 + 19.
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
semiPrimeQ[n_Integer] := Total[FactorInteger[n]][[2]] == 2; Select[Total /@ Partition[Prime[Range[100]], 3, 1], semiPrimeQ] (* T. D. Noe, Apr 20 2011 *)
Comments