cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188686 Binomial transform of the sequence of binomial(3n,n).

Original entry on oeis.org

1, 4, 22, 139, 934, 6484, 45931, 329893, 2393470, 17499892, 128732992, 951674398, 7064138779, 52616241370, 393052285291, 2943582912904, 22093111508686, 166141033332448, 1251528633163264, 9442096410241438, 71333250226656784
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Comments

Binomial transform of A005809.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Binomial[3k,k],{k,0,n}],{n,0,22}]
  • Maxima
    makelist(sum(binomial(n,k)*binomial(3*k,k),k,0,n),n,0,20);

Formula

G.f.: 2*cos((1/3)*arcsin(3/2*sqrt(3x/(1-x))))/sqrt(4-35x+31x^2).
D-finite recurrence: 2*n*(2*n-1)*a(n) = (39*n^2-43*n+12)*a(n-1) - 2*(n-1)*(33*n-34)*a(n-2) + 31*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 31^(n+1/2)/(6*4^n*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012
a(n) = [x^n] (1 + 4*x + 3*x^2 + x^3)^n. - Ilya Gutkovskiy, Apr 17 2025