A188723 Continued fraction of (Pi + sqrt(4 + Pi^2))/2.
3, 2, 3, 4, 2, 3, 1, 1, 105, 1, 2, 1, 13, 5, 16, 1, 44, 1, 1, 4, 2, 1, 2, 3, 100, 4, 1, 1, 18, 4, 2, 2, 2, 8, 2, 5, 2, 2, 3, 7, 184, 1, 8, 6, 2, 6, 2, 1, 5, 1, 38, 1, 2, 1, 1, 1, 4, 2, 6, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 2, 3, 8, 1, 1, 2, 1, 3, 1, 2, 1, 10, 1, 6, 1, 3, 1, 1, 1, 1, 2, 2, 1, 7, 1, 11, 1, 6, 1, 2, 13, 35, 1, 5, 2, 2, 1, 1, 2, 8, 2, 6, 2, 3, 1, 1, 2, 5
Offset: 0
Programs
-
Maple
Digits := 100 ; (Pi+sqrt(4+Pi^2))/2 ; evalf(%) ; numtheory[cfrac](%,40,'quotients') ; # R. J. Mathar, Apr 11 2011
-
Mathematica
r = Pi; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t] N[t, 130] RealDigits[N[t, 130]][[1]] ContinuedFraction[t, 120]
Extensions
Offset changed by Andrew Howroyd, Jul 07 2024
Comments