A188725 Decimal expansion of shape of a (2*Pi)-extension rectangle; shape = Pi + sqrt(1 + Pi^2).
6, 4, 3, 8, 5, 0, 0, 9, 6, 3, 0, 6, 5, 4, 0, 8, 3, 9, 7, 2, 2, 3, 2, 3, 2, 5, 6, 3, 5, 9, 4, 6, 9, 1, 7, 2, 9, 2, 6, 2, 1, 6, 6, 5, 4, 0, 8, 1, 3, 2, 6, 1, 5, 2, 5, 6, 1, 0, 6, 5, 1, 7, 3, 2, 5, 8, 9, 5, 9, 2, 1, 2, 6, 3, 3, 4, 3, 7, 5, 1, 1, 6, 9, 3, 8, 6, 9, 6, 6, 9, 2, 7, 7, 2, 1, 5, 3, 0, 9, 8, 5, 0, 0, 3, 9, 3, 0, 2, 8, 1, 2, 1, 5, 8, 5, 8, 7, 0, 2, 3, 1, 6, 7, 6, 5, 3, 0, 9, 1, 5
Offset: 1
Examples
6.4385009630654083972232325635946917292621665408132615256106...
Links
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R) + Sqrt(1 + Pi(R)^2); // G. C. Greubel, Oct 31 2018
-
Maple
evalf(Pi+sqrt(1+Pi^2),140); # Muniru A Asiru, Nov 01 2018
-
Mathematica
r = 2*Pi; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t] N[t, 130] RealDigits[N[t, 130]][[1]] (* A188725 *) ContinuedFraction[t, 120] (* A188726 *) RealDigits[Pi + Sqrt[1 + Pi^2], 10, 100][[1]] (* G. C. Greubel, Oct 31 2018 *)
-
PARI
default(realprecision, 100); Pi + sqrt(1 + Pi^2) \\ G. C. Greubel, Oct 31 2018
Comments