A188727 Decimal expansion of (e+sqrt(16+e^2))/4.
1, 8, 8, 8, 6, 2, 6, 2, 8, 9, 6, 4, 8, 2, 1, 6, 1, 6, 7, 0, 7, 5, 8, 1, 9, 4, 2, 5, 3, 2, 1, 7, 7, 0, 9, 2, 4, 4, 2, 4, 1, 9, 5, 2, 7, 0, 1, 1, 9, 0, 6, 0, 6, 0, 0, 9, 4, 2, 6, 4, 6, 6, 8, 8, 2, 5, 7, 9, 6, 8, 5, 5, 6, 1, 0, 1, 6, 9, 4, 5, 7, 4, 2, 8, 7, 0, 6, 2, 9, 9, 5, 7, 1, 6, 9, 2, 4, 5, 4, 1, 7, 5, 9, 0, 1, 3, 4, 9, 3, 3, 5, 7, 9, 1, 6, 1, 2, 2, 4, 6, 4, 3, 8, 9, 5, 4, 5, 0, 1, 8
Offset: 1
Examples
1.88862628964821616707581942532177092442419527...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); (Exp(1) + Sqrt(16 + Exp(2)))/4; // G. C. Greubel, Oct 31 2018
-
Maple
evalf((exp(1)+sqrt(16+exp(2)))/4,140); # Muniru A Asiru, Nov 01 2018
-
Mathematica
r = e/2; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t] N[t, 130] RealDigits[N[t, 130]][[1]] (* A188727 *) ContinuedFraction[t, 120] (* A188728 *)
-
PARI
default(realprecision, 100); (exp(1) + sqrt(16 + exp(2)))/4 \\ G. C. Greubel, Oct 31 2018
Comments