A188738 Decimal expansion of e-sqrt(e^2-1).
1, 9, 0, 6, 2, 3, 6, 0, 4, 1, 4, 7, 3, 3, 0, 6, 1, 4, 2, 5, 9, 4, 2, 8, 2, 5, 6, 5, 4, 1, 5, 5, 5, 2, 6, 8, 6, 6, 3, 0, 2, 2, 2, 0, 2, 0, 9, 8, 3, 5, 6, 4, 6, 1, 7, 3, 5, 2, 7, 3, 3, 7, 6, 8, 0, 9, 7, 0, 9, 0, 8, 8, 4, 4, 9, 2, 2, 1, 1, 4, 1, 7, 5, 2, 8, 9, 1, 5, 0, 6, 9, 9, 1, 0, 3, 7, 0, 9, 9, 6, 5, 5, 4, 3, 2, 5, 2, 3, 9, 9, 5, 5, 8, 1, 9, 8, 4, 7, 5, 9, 5, 9, 2, 6, 2, 9, 9, 7, 0, 2
Offset: 0
Examples
0.190623604147330614259428256541555268663022202.. = 1/A188739 with continued fraction 0, 5, 4, 15, 6, 1, 13, 2, 1, 1, 21, 3, 2, 16, 1, 4, 1, 1, 157,...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Clark Kimberling, A Visual Euclidean Algorithm, The Mathematics Teacher 76 (1983) 108-109.
- Clark Kimberling, Two kinds of golden triangles, generalized to match continued fractions, Journal for Geometry and Graphics, 11 (2007) 165-171.
- Index entries for transcendental numbers
Programs
-
Magma
SetDefaultRealField(RealField(100)); Exp(1) - Sqrt(Exp(2)-1); // G. C. Greubel, Nov 01 2018
-
Maple
evalf(exp(1)-sqrt(exp(2)-1),140); # Muniru A Asiru, Nov 01 2018
-
Mathematica
r = 2 E; t = (r - (-4 + r^2)^(1/2))/2; FullSimplify[t] N[t, 130] RealDigits[N[t, 130]][[1]] ContinuedFraction[t, 120]
-
PARI
default(realprecision, 100); exp(1) - sqrt(exp(2)-1) \\ G. C. Greubel, Nov 01 2018
Comments