cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188738 Decimal expansion of e-sqrt(e^2-1).

Original entry on oeis.org

1, 9, 0, 6, 2, 3, 6, 0, 4, 1, 4, 7, 3, 3, 0, 6, 1, 4, 2, 5, 9, 4, 2, 8, 2, 5, 6, 5, 4, 1, 5, 5, 5, 2, 6, 8, 6, 6, 3, 0, 2, 2, 2, 0, 2, 0, 9, 8, 3, 5, 6, 4, 6, 1, 7, 3, 5, 2, 7, 3, 3, 7, 6, 8, 0, 9, 7, 0, 9, 0, 8, 8, 4, 4, 9, 2, 2, 1, 1, 4, 1, 7, 5, 2, 8, 9, 1, 5, 0, 6, 9, 9, 1, 0, 3, 7, 0, 9, 9, 6, 5, 5, 4, 3, 2, 5, 2, 3, 9, 9, 5, 5, 8, 1, 9, 8, 4, 7, 5, 9, 5, 9, 2, 6, 2, 9, 9, 7, 0, 2
Offset: 0

Views

Author

Clark Kimberling, Apr 11 2011

Keywords

Comments

Decimal expansion of the shape of a lesser 2e-contraction rectangle.
The shape of a rectangle WXYZ, denoted by [WXYZ], is defined by length/width: [WXYZ]=max{|WX|/|YZ|, |YZ|/|WX|}. Consider the following configuration of rectangles AEFD, EBCF, ABCD, where AEFD is not a square:
D................F....C
.......................
.......................
.......................
A................E....B
Suppose that ABCD is given and that the shape r=[ABCD] exceeds 2. The "r-contraction rectangles" of ABCD are here introduced as the rectangles AEFD and EBCF for which [AEFD]=[EBCF] and |AE|<>|EB|. That is, ABCD has the prescribed shape r, and AEFD and EBCF are mutually similar without being congruent. It is easy to prove that [AEFD]=(1/2)(r-sqrt(-4+r^2)) or [AEFD]=(1/2)(r+sqrt(-4+r^2)); in the former case, we call AEFD the "lesser r-contraction rectangle", and the latter, the "greater r-contraction rectangle".
Both r-contraction rectangles match the continued fraction of [AEFD] in the following way. Write the continued fraction as [a(1),a(2),a(3),...]. Then, in the manner in which the continued fraction [1,1,1,...] matches the step-by-step removal of single squares from a golden triangle (as well as the manner in which the continued fraction [2,2,2,...] matches the step-by-step removal of 2 squares at a time from a silver triangle, etc.), remove a(1) squares at step 1, then remove a(2) squares at step 2, and so on, obtaining in the limit a partition of AEFD as an infinite set of squares.
For (related) r-extension rectangles, see A188640.

Examples

			0.190623604147330614259428256541555268663022202.. = 1/A188739 with continued fraction 0, 5, 4, 15, 6, 1, 13, 2, 1, 1, 21, 3, 2, 16, 1, 4, 1, 1, 157,...
		

Crossrefs

Cf. A001113, A188739 (inverse), A188627 (continued fraction), A188640.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Exp(1) - Sqrt(Exp(2)-1); // G. C. Greubel, Nov 01 2018
  • Maple
    evalf(exp(1)-sqrt(exp(2)-1),140); # Muniru A Asiru, Nov 01 2018
  • Mathematica
    r = 2 E; t = (r - (-4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]
  • PARI
    default(realprecision, 100); exp(1) - sqrt(exp(2)-1) \\ G. C. Greubel, Nov 01 2018