A188739 Decimal expansion of e+sqrt(e^2-1).
5, 2, 4, 5, 9, 4, 0, 0, 5, 2, 7, 7, 0, 7, 5, 9, 8, 5, 6, 4, 6, 1, 1, 4, 6, 6, 8, 6, 1, 6, 3, 7, 6, 9, 7, 2, 6, 8, 5, 1, 4, 7, 1, 9, 8, 5, 3, 0, 1, 5, 6, 2, 6, 8, 8, 1, 9, 8, 6, 6, 1, 8, 7, 8, 6, 3, 8, 4, 4, 4, 1, 7, 2, 2, 5, 7, 8, 7, 4, 0, 4, 7, 3, 8, 9, 8, 7, 2, 8, 5, 0, 0, 5, 9, 2, 9, 5, 7, 5, 5, 1, 9, 9, 5, 0, 0, 2, 5, 9, 8, 6, 8, 4, 2, 4, 1, 3, 5, 0, 8, 4, 0, 4, 2, 1, 9, 7, 2, 2, 3
Offset: 1
Examples
5.24594005277075985646114668616376972685147198530... = 1/A188738 .
Links
Programs
-
Magma
SetDefaultRealField(RealField(100)); Exp(1) + Sqrt(Exp(2) -1); // G. C. Greubel, Nov 01 2018
-
Mathematica
r = 2 E; t = (r + (-4 + r^2)^(1/2))/2; FullSimplify[t] N[t, 130] RealDigits[N[t, 130]][[1]] (* A188739 *) ContinuedFraction[t, 120] (* A188627 *) RealDigits[E+Sqrt[E^2-1],10,150][[1]] (* Harvey P. Dale, Oct 25 2020 *)
-
PARI
default(realprecision, 100); exp(1) + sqrt(exp(2) - 1) \\ G. C. Greubel, Nov 01 2018
Formula
e+sqrt(-1+e^2), with continued fraction A188627.
Equals exp(A365927). - Amiram Eldar, Oct 18 2023
Comments